--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:10053 - loss:MultipleNegativesRankingLoss base_model: answerdotai/ModernBERT-base widget: - source_sentence: Fluorescence quenching of tryptophan residues sentences: - 'Fluorescence of buried tyrosine residues in proteins. ' - 'A fluorescence quenching study of tryptophanyl residues of (Ca2+ + Mg2+)-ATPase from sarcoplasmic reticulum. ' - 'Some hormonal influences on the acetylation of sulfanilamide in vivo. ' - source_sentence: Human migration to the Americas sentences: - 'Homo sapiens in the Americas. Overview of the earliest human expansion in the New World. ' - 'Profiles of College Drinkers Defined by Alcohol Behaviors at the Week Level: Replication Across Semesters and Prospective Associations With Hazardous Drinking and Dependence-Related Symptoms. ' - 'Human migration. ' - source_sentence: Human Mobility Prediction sentences: - 'Human mobility prediction from region functions with taxi trajectories. ' - 'Understanding Human Mobility from Twitter. ' - 'Ovarian cancer gene therapy using HPV-16 pseudovirion carrying the HSV-tk gene. ' - source_sentence: Nevirapine Resistance sentences: - 'Nevirapine toxicity. ' - 'Recognizing rhenium. ' - 'Update on nevirapine: quest for a niche. ' - source_sentence: EHL tendon reconstruction sentences: - 'A Combined Surgical Approach for Extensor Hallucis Longus Reconstruction: Two Case Reports. ' - 'Flexor tendon reconstruction. ' - 'Noble gases and neuroprotection: summary of current evidence. ' pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy model-index: - name: SentenceTransformer based on answerdotai/ModernBERT-base results: - task: type: triplet name: Triplet dataset: name: triplet dev type: triplet-dev metrics: - type: cosine_accuracy value: 0.887 name: Cosine Accuracy --- # SentenceTransformer based on answerdotai/ModernBERT-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'EHL tendon reconstruction', 'A Combined Surgical Approach for Extensor Hallucis Longus Reconstruction: Two Case Reports. ', 'Flexor tendon reconstruction. ', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Triplet * Dataset: `triplet-dev` * Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:--------------------|:----------| | **cosine_accuracy** | **0.887** | ## Training Details ### Training Dataset #### json * Dataset: json * Size: 10,053 training samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:-------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------| | COM-induced secretome changes in U937 monocytes | Characterization of calcium oxalate crystal-induced changes in the secretome of U937 human monocytes. | Monocytes. | | Metamaterials | Sound attenuation optimization using metaporous materials tuned on exceptional points. | Metamaterials: A cat's eye for all directions. | | Pediatric Parasitology | Parasitic infections among school age children 6 to 11-years-of-age in the Eastern province. | [DIALOGUE ON PEDIATRIC PARASITOLOGY]. | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `learning_rate`: 0.0002 - `num_train_epochs`: 2 - `lr_scheduler_type`: cosine_with_restarts - `warmup_ratio`: 0.1 - `bf16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 0.0002 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: cosine_with_restarts - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs
Click to expand | Epoch | Step | Training Loss | triplet-dev_cosine_accuracy | |:------:|:----:|:-------------:|:---------------------------:| | 0 | 0 | - | 0.457 | | 0.0189 | 1 | 5.2934 | - | | 0.0377 | 2 | 5.2413 | - | | 0.0566 | 3 | 4.9969 | - | | 0.0755 | 4 | 4.5579 | - | | 0.0943 | 5 | 3.9145 | - | | 0.1132 | 6 | 3.3775 | - | | 0.1321 | 7 | 2.8787 | - | | 0.1509 | 8 | 3.0147 | - | | 0.1698 | 9 | 2.7166 | - | | 0.1887 | 10 | 2.7875 | - | | 0.2075 | 11 | 2.3848 | - | | 0.2264 | 12 | 2.1921 | - | | 0.2453 | 13 | 1.7009 | - | | 0.2642 | 14 | 1.7649 | - | | 0.2830 | 15 | 1.7948 | - | | 0.3019 | 16 | 1.5384 | - | | 0.3208 | 17 | 1.6039 | - | | 0.3396 | 18 | 1.3364 | - | | 0.3585 | 19 | 1.3852 | - | | 0.3774 | 20 | 1.2427 | - | | 0.3962 | 21 | 1.3216 | - | | 0.4151 | 22 | 1.4202 | - | | 0.4340 | 23 | 1.2754 | - | | 0.4528 | 24 | 1.281 | - | | 0.4717 | 25 | 1.1709 | 0.815 | | 0.4906 | 26 | 1.2363 | - | | 0.5094 | 27 | 1.2169 | - | | 0.5283 | 28 | 1.1495 | - | | 0.5472 | 29 | 1.0066 | - | | 0.5660 | 30 | 1.0478 | - | | 0.5849 | 31 | 1.1511 | - | | 0.6038 | 32 | 0.9992 | - | | 0.6226 | 33 | 1.095 | - | | 0.6415 | 34 | 1.1699 | - | | 0.6604 | 35 | 0.9866 | - | | 0.6792 | 36 | 1.1303 | - | | 0.6981 | 37 | 1.1126 | - | | 0.7170 | 38 | 0.889 | - | | 0.7358 | 39 | 1.0355 | - | | 0.7547 | 40 | 1.0129 | - | | 0.7736 | 41 | 1.118 | - | | 0.7925 | 42 | 0.8494 | - | | 0.8113 | 43 | 1.0829 | - | | 0.8302 | 44 | 0.8751 | - | | 0.8491 | 45 | 0.8115 | - | | 0.8679 | 46 | 0.8579 | - | | 0.8868 | 47 | 1.1111 | - | | 0.9057 | 48 | 0.9032 | - | | 0.9245 | 49 | 1.0394 | - | | 0.9434 | 50 | 0.9691 | 0.862 | | 0.9623 | 51 | 1.023 | - | | 0.9811 | 52 | 0.9465 | - | | 1.0 | 53 | 0.6713 | - | | 1.0189 | 54 | 0.9773 | - | | 1.0377 | 55 | 0.8693 | - | | 1.0566 | 56 | 0.7187 | - | | 1.0755 | 57 | 0.805 | - | | 1.0943 | 58 | 0.728 | - | | 1.1132 | 59 | 1.0967 | - | | 1.1321 | 60 | 0.7036 | - | | 1.1509 | 61 | 0.8213 | - | | 1.1698 | 62 | 0.57 | - | | 1.1887 | 63 | 0.7006 | - | | 1.2075 | 64 | 0.5091 | - | | 1.2264 | 65 | 0.5758 | - | | 1.2453 | 66 | 0.4484 | - | | 1.2642 | 67 | 0.397 | - | | 1.2830 | 68 | 0.6172 | - | | 1.3019 | 69 | 0.513 | - | | 1.3208 | 70 | 0.4447 | - | | 1.3396 | 71 | 0.3205 | - | | 1.3585 | 72 | 0.5881 | - | | 1.3774 | 73 | 0.2543 | - | | 1.3962 | 74 | 0.3648 | - | | 1.4151 | 75 | 0.4849 | 0.876 | | 1.4340 | 76 | 0.3455 | - | | 1.4528 | 77 | 0.3424 | - | | 1.4717 | 78 | 0.224 | - | | 1.4906 | 79 | 0.18 | - | | 1.5094 | 80 | 0.2255 | - | | 1.5283 | 81 | 0.3024 | - | | 1.5472 | 82 | 0.1835 | - | | 1.5660 | 83 | 0.1946 | - | | 1.5849 | 84 | 0.1958 | - | | 1.6038 | 85 | 0.1568 | - | | 1.6226 | 86 | 0.1626 | - | | 1.6415 | 87 | 0.1774 | - | | 1.6604 | 88 | 0.1934 | - | | 1.6792 | 89 | 0.2426 | - | | 1.6981 | 90 | 0.2958 | - | | 1.7170 | 91 | 0.1606 | - | | 1.7358 | 92 | 0.2281 | - | | 1.7547 | 93 | 0.1786 | - | | 1.7736 | 94 | 0.2241 | - | | 1.7925 | 95 | 0.1909 | - | | 1.8113 | 96 | 0.236 | - | | 1.8302 | 97 | 0.1332 | - | | 1.8491 | 98 | 0.1247 | - | | 1.8679 | 99 | 0.156 | - | | 1.8868 | 100 | 0.2152 | 0.889 | | 1.9057 | 101 | 0.1549 | - | | 1.9245 | 102 | 0.2226 | - | | 1.9434 | 103 | 0.21 | - | | 1.9623 | 104 | 0.2139 | - | | 1.9811 | 105 | 0.1864 | - | | 2.0 | 106 | 0.0719 | 0.887 |
### Framework Versions - Python: 3.12.3 - Sentence Transformers: 3.3.1 - Transformers: 4.48.0.dev0 - PyTorch: 2.5.1 - Accelerate: 1.2.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```