metadata
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- wwwtwwwt/fineaudio-Entertainment
metrics:
- wer
model-index:
- name: Whisper Tiny En - Entertainment - Game Commentary
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fineaudio-Entertainment-Game Commentary
type: wwwtwwwt/fineaudio-Entertainment
args: 'config: en, split: test'
metrics:
- name: Wer
type: wer
value: 44.23810933337487
Whisper Tiny En - Entertainment - Game Commentary
This model is a fine-tuned version of openai/whisper-tiny on the fineaudio-Entertainment-Game Commentary dataset. It achieves the following results on the evaluation set:
- Loss: 0.8809
- Wer: 44.2381
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.8337 | 0.5984 | 1000 | 0.9700 | 53.8114 |
0.6236 | 1.1969 | 2000 | 0.9055 | 50.0491 |
0.6036 | 1.7953 | 3000 | 0.8853 | 46.1559 |
0.4801 | 2.3938 | 4000 | 0.8850 | 44.7257 |
0.4514 | 2.9922 | 5000 | 0.8809 | 44.2381 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.20.0