--- tags: - generated_from_trainer metrics: - accuracy - recall - precision - f1 model-index: - name: NL_BERT_michelin_finetuned results: [] --- # NL_BERT_michelin_finetuned This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0637 - Accuracy: 0.9836 - Recall: 0.5486 - Precision: 0.7914 - F1: 0.6480 - Mse: 0.0164 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | Mse | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| | 0.1043 | 1.0 | 3647 | 0.0961 | 0.9792 | 0.3566 | 0.7606 | 0.4856 | 0.0208 | | 0.0799 | 2.0 | 7294 | 0.0797 | 0.9803 | 0.4364 | 0.7415 | 0.5495 | 0.0197 | | 0.0589 | 3.0 | 10941 | 0.0637 | 0.9836 | 0.5486 | 0.7914 | 0.6480 | 0.0164 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1