# Code to inference Hermes with HF Transformers # Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages import torch #from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import LlamaTokenizer, MixtralForCausalLM import bitsandbytes, flash_attn class EndpointHandler: def __init__(self, path=""): self.tokenizer = LlamaTokenizer.from_pretrained(path, trust_remote_code=True) self.model = MixtralForCausalLM.from_pretrained( path, torch_dtype=torch.float16, device_map="auto", load_in_8bit=False, load_in_4bit=True, use_flash_attention_2=True ) def __call__(self, data: Any) -> List[List[Dict[str, float]]]: sys_prompt=data["prompt"] list=data["inputs"] prompt=f"<|im_start|>system\n{sys_prompt}.<|im_end|>\n" for item in list: if item["role"]=="assistant": content=item["content"] prompt+=f"<|im_start|>assistant\n{content}<|im_end|>\n" else: content=item["content"] prompt+=f"<|im_start|>user\n{content}<|im_end|>\n" prompt+="<|im_start|>assistant\n" #for chat in prompts: #print(chat) input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to("cuda") generated_ids = self.model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=self.tokenizer.eos_token_id) response = self.tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True) return (f"Response: {response}") """ encodeds = self.tokenizer.encode(prompt, return_tensors="pt") model_inputs = encodeds.to(device) self.model.to(device) generated_ids = self.model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = self.tokenizer.decode(generated_ids[0]) return decoded """