--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-3-medium-diffusers tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - simpletuner - lora - template:sd-lora - not-for-all-audiences inference: true widget: - text: unconditional (blank prompt) parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/image_0_0.png - text: a photo of a naked woman with large breasts parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/image_1_0.png --- # sdxl-training This is a LoRA derived from [stabilityai/stable-diffusion-3-medium-diffusers](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers). The main validation prompt used during training was: ``` a photo of a naked woman with large breasts ``` ## Validation settings - CFG: `7.5` - CFG Rescale: `0.0` - Steps: `50` - Sampler: `euler` - Seed: `42` - Resolution: `1024` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 1072 - Training steps: 21450 - Learning rate: 0.0002 - Effective batch size: 20 - Micro-batch size: 5 - Gradient accumulation steps: 4 - Number of GPUs: 1 - Prediction type: epsilon - Rescaled betas zero SNR: False - Optimizer: AdamW, stochastic bf16 - Precision: Pure BF16 - Xformers: Enabled - LoRA Rank: 64 - LoRA Alpha: 64.0 - LoRA Dropout: 0.1 - LoRA initialisation style: default ## Datasets ### curated3 - Repeats: 0 - Total number of images: 400 - Total number of aspect buckets: 1 - Resolution: 0.5 megapixels - Cropped: False - Crop style: None - Crop aspect: None ## Inference ```python import torch from diffusers import DiffusionPipeline model_id = 'stabilityai/stable-diffusion-3-medium-diffusers' adapter_id = 'sdxl-training' prompt = 'a photo of a naked woman with large breasts' negative_prompt = 'blurry, cropped, ugly' pipeline = DiffusionPipeline.from_pretrained(model_id)\pipeline.load_adapter(adapter_id) pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') prompt = "a photo of a naked woman with large breasts" negative_prompt = "blurry, cropped, ugly" pipeline = DiffusionPipeline.from_pretrained(model_id) pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') image = pipeline( prompt=prompt, negative_prompt='blurry, cropped, ugly', num_inference_steps=50, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), width=1152, height=768, guidance_scale=7.5, guidance_rescale=0.0, ).images[0] image.save("output.png", format="PNG") ```