---
license: mit
base_model: wndknd/codellama-7b-stata
tags:
- generated_from_trainer
model-index:
- name: out
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: wndknd/codellama-7b-stata
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: HuggingFaceH4/CodeAlpaca_20K
type:
field_instruction: prompt
field_output: completion
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./out
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
flash_attn_cross_entropy: false
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
flash_attn_fuse_mlp: true
warmup_steps: 100
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: #deepspeed_configs/zero2.json # multi-gpu only
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
```
# out
This model is a fine-tuned version of [wndknd/codellama-7b-stata](https://huggingface.co/wndknd/codellama-7b-stata) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5586
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.1853 | 0.0 | 1 | 1.0273 |
| 0.6457 | 0.25 | 104 | 0.6773 |
| 0.6475 | 0.5 | 208 | 0.6700 |
| 0.5701 | 0.75 | 312 | 0.5586 |
### Framework versions
- Transformers 4.37.0
- Pytorch 2.1.1+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0