--- license: cc-by-sa-4.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-ko results: [] --- # bert-finetuned-ner-ko This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0083 - Precision: 0.9859 - Recall: 0.9913 - F1: 0.9886 - Accuracy: 0.9980 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0649 | 1.0 | 1250 | 0.0295 | 0.9468 | 0.9679 | 0.9572 | 0.9919 | | 0.0275 | 2.0 | 2500 | 0.0132 | 0.9777 | 0.9870 | 0.9823 | 0.9966 | | 0.0141 | 3.0 | 3750 | 0.0083 | 0.9859 | 0.9913 | 0.9886 | 0.9980 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1 - Datasets 2.10.1 - Tokenizers 0.13.2