--- language: - zh license: apache-2.0 base_model: openai/whisper-medium tags: - hf-asr-leaderboard - generated_from_trainer datasets: - whucedar/datasets_stt_1 metrics: - wer model-index: - name: zh-CN-model-medium-1 - whucedar results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: zh-CN type: whucedar/datasets_stt_1 args: 'config: zh, split: test' metrics: - name: Wer type: wer value: 188.47926267281105 --- # zh-CN-model-medium-1 - whucedar This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the zh-CN dataset. It achieves the following results on the evaluation set: - Loss: 0.1323 - Wer: 188.4793 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.0241 | 1.5873 | 100 | 0.1363 | 158.9862 | | 0.0042 | 3.1746 | 200 | 0.1312 | 239.6313 | | 0.0043 | 4.7619 | 300 | 0.1316 | 215.2074 | | 0.0013 | 6.3492 | 400 | 0.1312 | 203.6866 | | 0.0006 | 7.9365 | 500 | 0.1323 | 188.4793 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1