--- language: - ar license: apache-2.0 base_model: openai/whisper-large-v3 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - whitefox123/tashkeel metrics: - wer model-index: - name: Whisper large - tuned results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: CLARtts type: whitefox123/tashkeel config: default split: None args: 'config: ar, split: test' metrics: - name: Wer type: wer value: 156.86486486486487 --- # Whisper large - tuned This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the CLARtts dataset. It achieves the following results on the evaluation set: - Loss: 0.1992 - Wer: 156.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 9375 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0864 | 1.6 | 1000 | 0.1155 | 165.5135 | | 0.0291 | 3.2 | 2000 | 0.1192 | 268.0360 | | 0.0196 | 4.8 | 3000 | 0.1317 | 217.9820 | | 0.0024 | 6.4 | 4000 | 0.1583 | 136.1802 | | 0.0012 | 8.0 | 5000 | 0.1708 | 136.3604 | | 0.0004 | 9.6 | 6000 | 0.1841 | 128.7207 | | 0.0009 | 11.2 | 7000 | 0.1831 | 169.8739 | | 0.0003 | 12.8 | 8000 | 0.1885 | 158.7387 | | 0.0001 | 14.4 | 9000 | 0.1992 | 156.8649 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.17.0 - Tokenizers 0.15.2