--- language: - ko license: apache-2.0 base_model: openai/whisper-base tags: - hf-asr-leaderboard - generated_from_trainer datasets: - AIHub model-index: - name: test results: [] --- # test This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Voice data of foreigners speaking Korean for AI learning dataset. It achieves the following results on the evaluation set: - Loss: 0.5120 - Cer: 22.3647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0055 | 18.87 | 1000 | 0.4457 | 22.0218 | | 0.0009 | 37.74 | 2000 | 0.4855 | 21.6916 | | 0.0005 | 56.6 | 3000 | 0.5046 | 20.6502 | | 0.0004 | 75.47 | 4000 | 0.5120 | 22.3647 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1