---
license: apache-2.0
tags:
- brain decoding
- multimodal-large-language-models
- 'brain-mri '
- neuroimaging
datasets:
- weihaox/umbrae
---
UMBRAE: Unified Multimodal Brain Decoding (ECCV 2024)
1University College London
2Inria
3University of Cambridge
[🔋Online Demo](https://colab.research.google.com/drive/1VKd1gAB-6AIdMzBCG0J-U7h9vwsiKnHp) | [🌟GitHub](https://github.com/weihaox/UMBRAE) | [📜Paper](https://huggingface.co/papers/2404.07202)
UMBRAE decodes multimodal explanations from brain signals. (1) We introduce a universal brain encoder for multimodal-brain alignment and recover conceptual and spatial details by using multimodal large language models. (2) We introduce cross-subject training to overcome unique brain patterns of different individuals. This allows brain signals from multiple subjects to be trained within the same model. (3) Our method supports weakly-supervised subject adaptation, enabling the training of a model for a new subject in a data-efficient manner. (4) For evaluation, we introduce BrainHub, a brain understanding benchmark, based on NSD and COCO.
## Installation
### Environment
```bash
conda create -n brainx python=3.10
conda activate brainx
pip install -r requirements.txt
```
### Download Data and Checkpoints
The training and inference scripts support automatically downloading the dataset if the designated path is empty. However, this process can be quite slow. You can try the following script to download all data in advance if this happens. Please fill out the NSD [Data Access form](https://forms.gle/xue2bCdM9LaFNMeb7) and agree to the [Terms and Conditions](https://cvnlab.slite.page/p/IB6BSeW_7o/Terms-and-Conditions).
Download Checkpoints from [Hugging Face](https://huggingface.co/datasets/weihaox/brainx).
```bash
bash download_data.sh
bash download_checkpoint.sh
```
## Inference
Our method inherits multimodal understanding capabilities of MLLMs, enabling the switch between different tasks through different prompts. You can either use the prompts listed in our paper or create customised instructions according to actual needs. Please specify brainx-v-1-4 or brainx.
```bash
exp='brainx-v-1-4' # 'brainx'
prompt_caption='Describe this image as simply as possible.'
for sub in 1 2 5 7
do
python inference.py --data_path 'nsd_data' --fmri_encoder 'brainx' --subj $sub \
--prompt "$prompt_caption" --brainx_path "train_logs/${exp}/last.pth" \
--save_path "evaluation/eval_caption/${exp}"
done
```
Given that identified classes might be named differently, or simply absent from ground truth labels, we evaluate bounding boxes through REC. We use prompt `"Locate in and provide its coordinates, please"`, but others like `"Can you point out in the image and provide the bounding boxes of its location?"` shall also work.
```bash
for sub in 1 2 5 7
do
python inference_rec.py --data_path 'nsd_data' --fmri_encoder 'brainx' \
--subj $sub --brainx_path "train_logs/${exp}/last.pth" \
--save_path "evaluation/eval_bbox_rec/${exp}/sub0${sub}_dim1024"
done
```
## Training
### Single-Subject Training
```bash
accelerate launch --num_processes=1 --num_machines=1 --gpu_ids='0' train.py \
--data_path 'nsd_data' --fmri_encoder 'brainxs' --subj 1 \
--model_save_path 'train_logs/demo_single_subject/sub01_dim1024'
```
### Cross-Subject Training
```bash
accelerate launch --num_processes=1 --num_machines=1 --gpu_ids='0' train_brainx.py \
--data_path 'nsd_data' --fmri_encoder 'brainx' --batch_size 128 --num_epochs 300 \
--model_save_path 'train_logs/demo_cross_subject' --subj 1 2 5 7
```
### Weakly-Supervised Subject Adaptation
If you would like to adapt to a new subject, for example, S7, first train a model with other available subjects (S1, S2, S5) using the above cross-subject training. Then train the new subject using the following command.
```bash
sub=7
data_ratio=1.0
accelerate launch --num_processes=1 --num_machines=1 --gpu_ids='0' train_brainx_adaptation.py \
--data_path 'nsd_data' --fmri_encoder 'brainxc' --batch_size 128 --num_epochs 240 \
--subj $sub --data_ratio $data_ratio \
--encoder_path 'train_logs/demo_cross_subject/brainx_adaptation_125/last.pth' \
--model_save_path "train_logs/demo_weak_adaptation/brainx_adaptation_${sub}_${data_ratio}"
```
## Evaluation
The benchmark, including groundtruth data, evaluation scripts, and baseline results, is in [brainhub](https://github.com/weihaox/BrainHub).
1. Download `brainhub` to the root path: `git clone https://github.com/weihaox/BrainHub`
2. Process groundtruth test images: `python processing/decode_images.py`
3. Run evaluation for brain captioning and grounding:
```bash
cd BrainHub
for sub in 1 2 5 7
do
python eval_caption.py ../umbrae/evaluation/eval_caption/${exp}/sub0${sub}_dim1024/fmricap.json \
caption/images --references_json caption/fmri_cococap.json
python eval_bbox_rec.py --path_out "../umbrae/evaluation/eval_bbox_rec/${exp}/sub0${sub}_dim1024"
done
```
We also provide baseline results associated with [BrainHub](https://github.com/weihaox/BrainHub/tree/main/caption/comparison), including the captioning results from [SDRecon](https://github.com/yu-takagi/StableDiffusionReconstruction), [BrainCap](https://arxiv.org/abs/2305.11560), and [OneLLM](https://onellm.csuhan.com/), as well as the captioning and grounding results from [UMBRAE](https://weihaox.github.io/UMBRAE/).
## Acknowledgements
We thank the authors of [SDRecon](https://github.com/yu-takagi/StableDiffusionReconstruction), [BrainCap](https://arxiv.org/abs/2305.11560), and [OneLLM](https://onellm.csuhan.com/) for providing the codes or the results. We also express gratitude for [NSD](https://naturalscenesdataset.org/) and [COCO](https://cocodataset.org/#home), which were used to construct our brainhub. The training script is based on [MindEye](https://medarc-ai.github.io/mindeye/). We utilize the pretrained models [Shikra](https://github.com/shikras/shikra) and [LLaVA](https://llava-vl.github.io/) as the MLLMs. Thanks for the awesome research works.
## Citation
```bibtex
@inproceedings{xia2024umbrae,
author = {Xia, Weihao and de Charette, Raoul and Öztireli, Cengiz and Xue, Jing-Hao},
title = {UMBRAE: Unified Multimodal Brain Decoding},
booktitle = {European Conference on Computer Vision (ECCV)},
year = {2024},
}
```