import torch import torch.nn as nn import torch.nn.functional as F from transformers import ( BertModel, BertConfig, PretrainedConfig, PreTrainedModel, ) from transformers.modeling_outputs import SequenceClassifierOutput class BertConfigForWebshop(PretrainedConfig): model_type = "bert" def __init__( self, pretrained_bert=True, image=False, **kwargs ): self.pretrained_bert = pretrained_bert self.image = image super().__init__(**kwargs) class BiAttention(nn.Module): def __init__(self, input_size, dropout): super().__init__() self.dropout = nn.Dropout(dropout) self.input_linear = nn.Linear(input_size, 1, bias=False) self.memory_linear = nn.Linear(input_size, 1, bias=False) self.dot_scale = nn.Parameter( torch.zeros(size=(input_size,)).uniform_(1. / (input_size ** 0.5)), requires_grad=True) self.init_parameters() def init_parameters(self): return def forward(self, context, memory, mask): bsz, input_len = context.size(0), context.size(1) memory_len = memory.size(1) context = self.dropout(context) memory = self.dropout(memory) input_dot = self.input_linear(context) memory_dot = self.memory_linear(memory).view(bsz, 1, memory_len) cross_dot = torch.bmm( context * self.dot_scale, memory.permute(0, 2, 1).contiguous()) att = input_dot + memory_dot + cross_dot att = att - 1e30 * (1 - mask[:, None]) weight_one = F.softmax(att, dim=-1) output_one = torch.bmm(weight_one, memory) weight_two = (F.softmax(att.max(dim=-1)[0], dim=-1) .view(bsz, 1, input_len)) output_two = torch.bmm(weight_two, context) return torch.cat( [context, output_one, context * output_one, output_two * output_one], dim=-1) class BertModelForWebshop(PreTrainedModel): config_class = BertConfigForWebshop def __init__(self, config): super().__init__(config) bert_config = BertConfig.from_pretrained('bert-base-uncased') if config.pretrained_bert: self.bert = BertModel.from_pretrained('bert-base-uncased') else: self.bert = BertModel(config) self.bert.resize_token_embeddings(30526) self.attn = BiAttention(768, 0.0) self.linear_1 = nn.Linear(768 * 4, 768) self.relu = nn.ReLU() self.linear_2 = nn.Linear(768, 1) if config.image: self.image_linear = nn.Linear(512, 768) else: self.image_linear = None @staticmethod def get_aggregated(output, lens, method): """ Get the aggregated hidden state of the encoder. B x D """ if method == 'mean': return torch.stack([output[i, :j, :].mean(0) for i, j in enumerate(lens)], dim=0) elif method == 'last': return torch.stack([output[i, j-1, :] for i, j in enumerate(lens)], dim=0) elif method == 'first': return output[:, 0, :] def forward(self, state_input_ids, state_attention_mask, action_input_ids, action_attention_mask, sizes, images=None, labels=None): sizes = sizes.tolist() # print(state_input_ids.shape, action_input_ids.shape) state_rep = self.bert(state_input_ids, attention_mask=state_attention_mask)[0] if images is not None and self.image_linear is not None: images = self.image_linear(images) state_rep = torch.cat([images.unsqueeze(1), state_rep], dim=1) state_attention_mask = torch.cat([state_attention_mask[:, :1], state_attention_mask], dim=1) action_rep = self.bert(action_input_ids, attention_mask=action_attention_mask)[0] state_rep = torch.cat([state_rep[i:i+1].repeat(j, 1, 1) for i, j in enumerate(sizes)], dim=0) state_attention_mask = torch.cat([state_attention_mask[i:i+1].repeat(j, 1) for i, j in enumerate(sizes)], dim=0) act_lens = action_attention_mask.sum(1).tolist() state_action_rep = self.attn(action_rep, state_rep, state_attention_mask) state_action_rep = self.relu(self.linear_1(state_action_rep)) act_values = self.get_aggregated(state_action_rep, act_lens, 'mean') act_values = self.linear_2(act_values).squeeze(1) logits = [F.log_softmax(_, dim=0) for _ in act_values.split(sizes)] loss = None if labels is not None: loss = - sum([logit[label] for logit, label in zip(logits, labels)]) / len(logits) return SequenceClassifierOutput( loss=loss, logits=logits, )