""" Tiny LLM 模型架构 到处抄,整体还是Llama2的模型架构 """ import math import warnings from threading import Thread from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.activations import ACT2FN from transformers.cache_utils import Cache, DynamicCache from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast from transformers.modeling_utils import PreTrainedModel from transformers.utils import logging from transformers.generation.utils import GenerationConfig from .configuration_tinyllm import TinyllmConfig logger = logging.get_logger(__name__) def debug(key, value): """ """ try: res = {"var": torch.var(value).item(), "mean": torch.mean(value).item(), "max":torch.max(value).item(), "size": value.size(), "dtype": value.dtype} except: res = value print("debug", key, res, sep="\t") def report_memory(name): """Simple GPU memory report.""" mega_bytes = 1024.0 * 1024.0 string = name + ' memory (MB)' # 变量分配显存 string += ' | allocated: {}'.format( torch.cuda.memory_allocated() / mega_bytes) string += ' | max allocated: {}'.format( torch.cuda.max_memory_allocated() / mega_bytes) # 缓存和变量分配显存,实际显存还需要+pytorch context string += ' | reserved: {}'.format( torch.cuda.memory_reserved() / mega_bytes) string += ' | max reserved: {}'.format( torch.cuda.max_memory_reserved() / mega_bytes) try: if torch.distributed.get_rank() == 0: print("[Rank {}] {}".format(torch.distributed.get_rank(), string), flush=True) pass except: pass class TinyllmRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ TinyllmRMSNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) class TinyllmRotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): """ 旋转位置编码 - dim (int): 旋转嵌入的维度大小。 - max_position_embeddings (int): 预计算的最大位置嵌入数,默认为2048。 - base (int): 用于计算逆频率的基本频率,默认为10000。 """ super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base # 计算逆频率值,并将其注册为模型的缓冲区 inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) # 为了支持`torch.jit.trace`功能,立即计算预存储的余弦和正弦缓存 self._set_cos_sin_cache( seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() ) def _set_cos_sin_cache(self, seq_len, device, dtype): """ 预计算的余弦和正弦缓存 """ self.max_seq_len_cached = seq_len # 创建一个从0到最大序列长度-1的整数张量,与 inv_freq 具有相同的设备和数据类型 t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) # 计算每个位置与每个维度的频率,形成频谱矩阵 freqs = torch.outer(t, self.inv_freq) # 不同于论文中的实现,这里采用了不同的排列方式以获得相同的计算结果 emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) def forward(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) return ( self.cos_cached[:seq_len].to(dtype=x.dtype), self.sin_cached[:seq_len].to(dtype=x.dtype), ) def rotate_half(x): """ 旋转输入一半的 hidden dim """ x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): """ 在 qk 应用旋转位置编码 Args: q (`torch.Tensor`): q k (`torch.Tensor`): k cos (`torch.Tensor`): 旋转位置嵌入的余弦部分 sin (`torch.Tensor`): 旋转位置嵌入的正弦部分 position_ids (`torch.Tensor`): 与q和k对应位置的标记索引。例如,在处理KV缓存时,可以使用偏移过的位置ID。 unsqueeze_dim (`int`, *optional*, defaults to 1): 'unsqueeze_dim' 参数指定了沿哪个维度对 cos[position_ids] 和 sin[position_ids] 进行扩展,以便它们能够适当地广播到 q 和 k 的维度上。 例如,注意 cos[position_ids] 和 sin[position_ids] 具有形状 [batch_size, seq_len, head_dim]。 那么,如果 q 和 k 的形状分别为 [batch_size, heads, seq_len, head_dim], 则设置 unsqueeze_dim=1 可使 cos[position_ids] 和 sin[position_ids] 可以广播到 q 和 k 的形状上。 同样地,如果 q 和 k 的形状为 [batch_size, seq_len, heads, head_dim],则应将 unsqueeze_dim 设置为 2 Returns: 包含使用旋转位置嵌入变换后的q和k张量的 `tuple(torch.Tensor)`。 """ # print("ori cos: ", cos.shape) cos = cos[position_ids].unsqueeze(unsqueeze_dim) sin = sin[position_ids].unsqueeze(unsqueeze_dim) # print("q: ", q.shape) # print("cos: ", cos.shape) # print("sin: ", sin.shape) # print("rotate_half: ", rotate_half(q).shape) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class TinyllmMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): intermediate = self.act_fn(self.gate_proj(x)) * self.up_proj(x) down_proj = self.down_proj(intermediate) return down_proj def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class TinyllmAttention(nn.Module): """ 多头注意力 """ def __init__(self, config: TinyllmConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta # 因果自回归模式 self.is_causal = True self.attention_dropout = config.attention_dropout if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) self.rotary_emb = TinyllmRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta, ) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) # 重新投影,变成多头注意力结构 query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index." ) kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) # 应用旋转位置编码到 qk 向量 cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) # 如果存在缓存,则更新 kv if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # repeat k/v heads if n_kv_heads < n_heads # 如果 num_key_value_heads 小于 num_heads,则重复key和value向量以匹配头数量 key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) # 计算注意力权重 attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): raise ValueError( f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask # softmax归一化注意力权重,并转换至float32类型以防止数值溢出 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) # 注意力输出 attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) # 还原注意力输出的形状以与后续层对接 attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) # 通过o_proj层进一步处理注意力输出 attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class TinyllmSdpaAttention(TinyllmAttention): """ 使用 torch.nn.functional.scaled_dot_product_attention 实现的注意力模块。 该模块继承自 `TinyllmAttention`,因为模块的权重保持不变。唯一的变化在于前向传播过程中适应 SDPA API。 Scaled Dot Product Attention (SDPA) """ def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # 当设置output_attentions=True时,由于torch.nn.functional.scaled_dot_product_attention不支持直接返回注意力权重 # 因此暂时降级回用父类的手动实现方式,并发出警告提示用户未来版本的更改要求 if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "Model is using SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) # 获取输入维度信息 bsz, q_len, _ = hidden_states.size() # 对输入进行线性映射得到query、key、value向量 query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) # 将映射后的向量调整为多头注意力所需格式 query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) # 计算有效的 kv 序列长度(考虑缓存的情况) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) # 应用旋转位置嵌入(RoPE) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) # 如果有缓存,更新key和value状态 if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and attention_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() # 使用scaled_dot_product_attention进行计算 attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=self.attention_dropout if self.training else 0.0, # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. is_causal=self.is_causal and attention_mask is None and q_len > 1, ) # 还原注意力输出的形状 attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, self.hidden_size) # 将注意力输出通过最终的线性层(o_proj层) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value TINYLLM_ATTENTION_CLASSES = { "eager": TinyllmAttention, "sdpa": TinyllmSdpaAttention, } class TinyllmDecoderLayer(nn.Module): def __init__(self, config: TinyllmConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = TINYLLM_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) self.mlp = TinyllmMLP(config) self.input_layernorm = TinyllmRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = TinyllmRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): 输入形状 `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask 形状`(batch, sequence_length)`, 填充使用0表示 output_attentions (`bool`, *optional*): 是否返回所有注意力层的注意力张量。 use_cache (`bool`, *optional*): 如果设置为 `True`,则返回 `past_key_values` 关键值状态,可用于加速解码 past_key_value (`Tuple(torch.FloatTensor)`, *optional*): 缓存的之前kv状态 """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs class TinyllmPreTrainedModel(PreTrainedModel): config_class = TinyllmConfig # 定义了模型内部子模块命名的基础前缀,当加载或保存模型时,这个前缀将用于识别模型主体部分。 base_model_prefix = "model" # 表明该模型支持梯度检查点技术,这是一种内存优化策略,可减少模型训练时所需的显存 supports_gradient_checkpointing = True # 指定了在序列化过程中不应被拆分的模块列表,即在模型保存与加载时保持这些模块作为一个整体。 _no_split_modules = ["TinyllmDecoderLayer"] # 在跨设备数据移动时,指示哪些关键字(key)对应的数据应该跳过设备放置步骤。 _skip_keys_device_placement = "past_key_values" # Scaled Dot Product Attention (SDPA) _supports_sdpa = True # 表示模型支持缓存机制,这在自回归模型(如Transformer解码器)中很常见, # 用于存储先前计算的结果以加快后续时间步长的计算速度。 _supports_cache_class = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() class TinyllmModel(TinyllmPreTrainedModel): """ 根据配置文件堆叠 TinyllmDecoderLayer Args: config: TinyllmConfig """ def __init__(self, config: TinyllmConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [TinyllmDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self._attn_implementation = config._attn_implementation self.norm = TinyllmRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, # 每个输入序列词元在位置嵌入中的位置索引 past_key_values: Optional[List[torch.FloatTensor]] = None, # 可用于加速序列解码预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值) inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False past_key_values_length = 0 if use_cache: use_legacy_cache = not isinstance(past_key_values, Cache) if use_legacy_cache: past_key_values = DynamicCache.from_legacy_cache(past_key_values) past_key_values_length = past_key_values.get_usable_length(seq_length) if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device # 生成一个从past_key_values_length到seq_length + past_key_values_length的整数序列 position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device ) # 将生成的序列重塑为形状为(1, seq_length)的张量,然后展平为形状为(-1, seq_length)的张量 position_ids = position_ids.unsqueeze(0).view(-1, seq_length) else: position_ids = position_ids.view(-1, seq_length).long() if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) # 适应不同注意力机制对注意力掩码的不同要求而设计的 if self._attn_implementation == "sdpa" and not output_attentions: # output_attentions=True can not be supported when using SDPA, and we fall back on # the manual implementation that requires a 4D causal mask in all cases. attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, ) else: # 4d mask is passed through the layers attention_mask = _prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, sliding_window=self.config.sliding_window, ) hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None for decoder_layer in self.layers: # 1.隐藏状态保存 if output_hidden_states: all_hidden_states += (hidden_states,) # 2.梯度检查,方便在反向传播时只激活部分层,节省内存资源 # 3.解码层: if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, position_ids, past_key_values, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, ) # 4.更新隐藏状态 hidden_states = layer_outputs[0] # 5.更新缓存 if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] # 6.注意力输出保存 if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = None if use_cache: next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class TinyllmForCausalLM(TinyllmPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = TinyllmModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) logits = logits.float() loss = None if labels is not None: # Shift so that tokens < n predict n # 对于自回归模型(如GPT系列),我们需要将模型输出的logits向前移动一位, # 这样使得模型预测的是当前时刻 t 的下一个词,而非当前词本身 shift_logits = logits[..., :-1, :].contiguous() # 同时,也需要将真实标签(labels)向前移动一位以与调整后的logits对齐 shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss(ignore_index=-100) # 将移位后的 logits 和 labels 扁平化,即将它们展平为一维张量 # 其中shift_logits变成 (batch_size * sequence_length, vocab_size) 的形式 # shift_labels变为 (batch_size * sequence_length) 的形式 shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism # 确保模型并行计算时,labels的数据存储位置与logits一致 shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs ): """ 准备模型的输入参数 包括处理input_ids、past_key_values(历史隐藏状态缓存)、attention_mask以及可选的inputs_embeds。 """ # Omit tokens covered by past_key_values if past_key_values is not None: if isinstance(past_key_values, Cache): cache_length = past_key_values.get_seq_length() past_length = past_key_values.seen_tokens max_cache_length = past_key_values.get_max_length() else: cache_length = past_length = past_key_values[0][0].shape[2] max_cache_length = None # 根据缓存情况裁剪input_ids,只保留未处理的token: # # 1. 如果 attention_mask 比 input_ids 更长,说明部分输入已通过缓存传递(如仅传入inputs_embeds) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: # 取最后未处理的部分 input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2. 若已处理的 token 数小于input_ids中的总数,表明input_ids包含全部输入,从中去掉已处理的部分 elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3. 否则,认为input_ids中只有待处理的新token # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. if ( max_cache_length is not None and attention_mask is not None and cache_length + input_ids.shape[1] > max_cache_length ): attention_mask = attention_mask[:, -max_cache_length:] # 初始化或处理position_ids position_ids = kwargs.get("position_ids", None) # 如果attention_mask存在但position_ids不存在,则基于attention_mask动态创建position_ids if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # 根据inputs_embeds和past_key_values的存在与否来决定模型输入 # 如果提供了inputs_embeds且没有past_key_values(首次生成步骤),则直接使用inputs_embeds作为模型输入 if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): """ 用于重新排序缓存中的历史隐藏状态,以适应束搜索(beam search)算法 """ reordered_past = () # 遍历每一层的隐藏状态 for layer_past in past_key_values: # 对于每一层的每个隐藏状态向量,执行索引选择操作 reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past def chat(self, tokenizer, messages: List[dict], stream=False, generation_config: Optional[GenerationConfig]=None): pass class TinyllmForSequenceClassification(TinyllmPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = TinyllmModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") # 确定输入序列的有效长度,即从起始到第一个填充符出现之前的所有非填充字符的数量 if self.config.pad_token_id is None: # 无法计算有效长度 sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility # 对于给定的输入IDs(input_ids),查找其中等于填充符ID的位置 # argmax(-1)作用在最后一个维度上,找到每个序列中填充符首次出现的最大索引位置 # 因为索引是从0开始的,减去1可得到每个序列的有效字符数(不含填充符) sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 # 为了保证与ONNX兼容以及防止越界,当序列尾部被完全填充时,采用模运算来保持有效长度 # 即使索引超过了输入序列的实际长度,也会自动对应回到有效的范围之内 sequence_lengths = sequence_lengths % input_ids.shape[-1] # 确保计算出的序列长度在与logits相同的设备上,便于后续操作 sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 # 提取实际标签对应的logits # 使用arange函数生成一个从0到batch_size-1的索引,并与sequence_lengths结合, # 选取每个样本的有效logit pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: labels = labels.to(logits.device) # 若模型配置没有明确指定 problem_type ,则根据num_labels和labels的数据类型推断 problem_type if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": # 使用均方误差损失函数 loss_fct = MSELoss() # 如果num_labels为1,则直接计算单输出的损失;否则,按列计算所有输出的损失 if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": # 单标签分类任务,使用交叉熵损失函数 loss_fct = CrossEntropyLoss() # 将pooled_logits展平为(batch_size * num_labels)的形式,与同样展平后的labels进行比较 loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": # 多标签分类任务,使用带Sigmoid激活的二元交叉熵损失函数 loss_fct = BCEWithLogitsLoss() # 直接计算sigmoid之前的logits与标签之间的损失 loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def print_model_parameters(model): """ 打印模型各个层参数 """ param_sum = 0 for name, param in model.named_parameters(): if param.requires_grad: param_sum += param.numel() print(f"Layer: {name}, Parameters: {param.numel()}") print(f"Total of parameters: {param_sum}") if __name__ == "__main__": # vocav size https://github.com/THUDM/ChatGLM3/issues/634 args_1480m = TinyllmConfig( hidden_size=2048, num_hidden_layers=24, num_attention_heads=16, intermediate_size=5504, rope_theta=10000.0, max_position_embeddings=1024, vocab_size=64798, ) args_440m = TinyllmConfig( hidden_size=1024, num_hidden_layers=24, num_attention_heads=16, intermediate_size=2816, rope_theta=10000.0, max_position_embeddings=1024, vocab_size=64798, ) args_210m = TinyllmConfig( hidden_size=768, num_hidden_layers=16, num_attention_heads=12, intermediate_size=2048, rope_theta=10000.0, max_position_embeddings=1024, vocab_size=64798, ) args_92m = TinyllmConfig( hidden_size=512, num_hidden_layers=8, num_attention_heads=8, intermediate_size=1408, rope_theta=10000.0, max_position_embeddings=1024, vocab_size=64798, ) args_42m = TinyllmConfig( hidden_size=288, num_hidden_layers=6, num_attention_heads=6, intermediate_size=768, rope_theta=10000.0, max_position_embeddings=512, vocab_size=64798, ) args_16m = TinyllmConfig( hidden_size=120, num_hidden_layers=6, num_attention_heads=6, intermediate_size=384, rope_theta=10000.0, max_position_embeddings=512, vocab_size=64798, ) model = TinyllmForCausalLM(args_210m) inputs_ids = torch.tensor([[1,2,4],[4,3,2]]) labels = torch.tensor([[1,4,3],[2,3,1]]) print(inputs_ids.shape) outputs = model(input_ids=inputs_ids, labels=labels) print(outputs.logits) print(outputs.loss) # print_model_parameters(model)