--- language: - en license: apache-2.0 library_name: atommic datasets: - SKMTEA thumbnail: null tags: - image-segmentation - AttentionUNet - ATOMMIC - pytorch model-index: - name: SEG_AttentionUNet_SKMTEA results: [] --- ## Model Overview AttentionUNet for MRI Segmentation on the SKMTEA dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/SEG/SKMTEA/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/SEG_AttentionUNet_SKMTEA/blob/main/SEG_AttentionUNet_SKMTEA.atommic mode: test ``` ### Usage You need to download the SKM-TEA dataset to effectively use this model. Check the [SKMTEA](https://github.com/wdika/atommic/blob/main/projects/SEG/SKMTEA/README.md) page for more information. ## Model Architecture ```base model: model_name: SEGMENTATIONATTENTIONUNET segmentation_module: AttentionUNet segmentation_module_input_channels: 1 segmentation_module_output_channels: 4 segmentation_module_channels: 32 segmentation_module_pooling_layers: 5 segmentation_module_dropout: 0.0 segmentation_module_normalize: false segmentation_loss: dice: 1.0 dice_loss_include_background: true # always set to true if the background is removed dice_loss_to_onehot_y: false dice_loss_sigmoid: false dice_loss_softmax: false dice_loss_other_act: none dice_loss_squared_pred: false dice_loss_jaccard: false dice_loss_flatten: false dice_loss_reduction: mean_batch dice_loss_smooth_nr: 1e-5 dice_loss_smooth_dr: 1e-5 dice_loss_batch: true dice_metric_include_background: true # always set to true if the background is removed dice_metric_to_onehot_y: false dice_metric_sigmoid: false dice_metric_softmax: false dice_metric_other_act: none dice_metric_squared_pred: false dice_metric_jaccard: false dice_metric_flatten: false dice_metric_reduction: mean_batch dice_metric_smooth_nr: 1e-5 dice_metric_smooth_dr: 1e-5 dice_metric_batch: true segmentation_classes_thresholds: [0.5, 0.5, 0.5, 0.5] segmentation_activation: sigmoid magnitude_input: true log_multiple_modalities: false # log all modalities in the same image, e.g. T1, T2, T1ce, FLAIR will be concatenated normalization_type: minmax normalize_segmentation_output: true complex_data: false ``` ## Training ```base optim: name: adam lr: 1e-4 betas: - 0.9 - 0.98 weight_decay: 0.0 sched: name: InverseSquareRootAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed # '16-mixed', 'bf16-mixed', '32-true', '64-true', '64', '32', '16', 'bf16' enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance Evaluation can be performed using the segmentation [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/segmentation.py) script for the segmentation task, with --evaluation_type per_slice. Results ------- Evaluation ---------- DICE = 0.909 +/- 0.08848 F1 = 0.6371 +/- 0.4746 HD95 = 6.358 +/- 2.209 IOU = 0.5294 +/- 0.3607 ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Desai AD, Schmidt AM, Rubin EB, et al. SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation. 2022