--- language: - en license: apache-2.0 library_name: atommic datasets: - fastMRIBrainsMulticoil thumbnail: null tags: - image-reconstruction - XPDNet - ATOMMIC - pytorch model-index: - name: REC_XPDNet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM results: [] --- ## Model Overview XPDNet for 4x & 8x accelerated MRI Reconstruction on the fastMRIBrainsMulticoil dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_XPDNet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM/blob/main/REC_XPDNet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM.atommic mode: test ``` ### Usage You need to download the fastMRI Brains dataset to effectively use this model. Check the [fastMRIBrainsMulticoil](https://github.com/wdika/atommic/blob/main/projects/REC/fastMRIBrainsMulticoil/README.md) page for more information. ## Model Architecture ```base model: model_name: XPDNet num_primal: 5 num_dual: 1 num_iter: 10 use_primal_only: true kspace_model_architecture: CONV kspace_in_channels: 2 kspace_out_channels: 2 dual_conv_hidden_channels: 16 dual_conv_num_dubs: 2 dual_conv_batchnorm: false image_model_architecture: MWCNN imspace_in_channels: 2 imspace_out_channels: 2 mwcnn_hidden_channels: 16 mwcnn_num_scales: 0 mwcnn_bias: true mwcnn_batchnorm: false normalize_image: true dimensionality: 2 reconstruction_loss: l1: 0.1 ssim: 0.9 estimate_coil_sensitivity_maps_with_nn: true ``` ## Training ```base optim: name: adam lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: InverseSquareRootAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against RSS targets ------------------------------ 4x: MSE = 0.001292 +/- 0.006735 NMSE = 0.03317 +/- 0.1122 PSNR = 31.03 +/- 6.749 SSIM = 0.8543 +/- 0.2115 8x: MSE = 0.002671 +/- 0.00606 NMSE = 0.07137 +/- 0.1499 PSNR = 26.96 +/- 6.179 SSIM = 0.7881 +/- 0.2177 ## Limitations This model was trained on the fastMRIBrainsMulticoil batch0 dataset using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Muckley MJ, Riemenschneider B, Radmanesh A, Kim S, Jeong G, Ko J, Jun Y, Shin H, Hwang D, Mostapha M, Arberet S, Nickel D, Ramzi Z, Ciuciu P, Starck JL, Teuwen J, Karkalousos D, Zhang C, Sriram A, Huang Z, Yakubova N, Lui YW, Knoll F. Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction. IEEE Trans Med Imaging. 2021 Sep;40(9):2306-2317. doi: 10.1109/TMI.2021.3075856. Epub 2021 Aug 31. PMID: 33929957; PMCID: PMC8428775.