--- language: - en license: apache-2.0 library_name: atommic datasets: - AHEAD thumbnail: null tags: - image-reconstruction - CIRIM - ATOMMIC - pytorch model-index: - name: REC_CIRIM_AHEAD_gaussian2d_12x results: [] --- ## Model Overview Cascades of Independently Recurrent Inference Machines (CIRIM) for 12x accelerated MRI Reconstruction on the AHEAD dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/AHEAD/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_CIRIM_AHEAD_gaussian2d_12x/blob/main/REC_CIRIM_AHEAD_gaussian2d_12x.atommic mode: test ``` ### Usage You need to download the AHEAD dataset to effectively use this model. Check the [AHEAD](https://github.com/wdika/atommic/blob/main/projects/REC/AHEAD/README.md) page for more information. ## Model Architecture ```base model: model_name: CIRIM recurrent_layer: IndRNN conv_filters: - 64 - 64 - 2 conv_kernels: - 5 - 3 - 3 conv_dilations: - 1 - 2 - 1 conv_bias: - true - true - false recurrent_filters: - 64 - 64 - 0 recurrent_kernels: - 1 - 1 - 0 recurrent_dilations: - 1 - 1 - 0 recurrent_bias: - true - true - false depth: 2 time_steps: 8 conv_dim: 2 num_cascades: 5 no_dc: true keep_prediction: true accumulate_predictions: true dimensionality: 2 num_echoes: 4 reconstruction_loss: ssim: 1.0 ``` ## Training ```base optim: name: adamw lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: PolynomialHoldDecayAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/AHEAD/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against SENSE targets -------------------------------- 12x: MSE = 0.0009594 +/- 0.003039 NMSE = 0.04406 +/- 0.07482 PSNR = 32.89 +/- 8.596 SSIM = 0.909 +/- 0.08273 ## Limitations This model was trained on very few subjects on the AHEAD dataset. It is not guaranteed to generalize to other datasets. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Alkemade A, Mulder MJ, Groot JM, et al. The Amsterdam Ultra-high field adult lifespan database (AHEAD): A freely available multimodal 7 Tesla submillimeter magnetic resonance imaging database. NeuroImage 2020;221.