--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - landscape pipeline_tag: other widget: - text: isometric scspace terrain --- # DreamBooth model for Starcraft:Remastered terrain This is a Stable Diffusion model fine-tuned on Starcraft terrain images on the Space Platform tileset with DreamBooth. It can be used by adding the `instance_prompt`: **isometric scspace terrain** It was trained on 32x32 terrain images from 265 melee maps including original Blizzard maps and those downloaded from Battle.net, scmscx.com and broodwarmaps.net. To run the demo, use this notebook on Colab: https://colab.research.google.com/github/wdcqc/WaveFunctionDiffusion/blob/remaster/colab/WaveFunctionDiffusion_Demo.ipynb Alternatively run it on Huggingface Spaces: (it is slow, recommended to run on Colab) https://huggingface.co/spaces/wdcqc/wfd In addition to Dreambooth, a custom VAE model (`AutoencoderTile`) is trained to encode and decode the latents to/from tileset probabilities ("waves") and then generated as Starcraft maps. A WFC Guidance, inspired by the Wave Function Collapse algorithm, is also added to the pipeline. For more information about guidance please see this page: [Fine-Tuning, Guidance and Conditioning](https://github.com/huggingface/diffusion-models-class/tree/main/unit2) This model was created as part of the DreamBooth Hackathon. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on starcraft terrain images for the landscape theme. GitHub: https://github.com/wdcqc/WaveFunctionDiffusion ## Usage First clone the git repository: ```bash git clone https://github.com/wdcqc/WaveFunctionDiffusion.git ``` Then create a Jupyter notebook under the repository folder: ```python # Load pipeline from wfd.wf_diffusers import WaveFunctionDiffusionPipeline from wfd.wf_diffusers import AutoencoderTile wfc_data_path = "tile_data/wfc/platform_32x32.npz" # Use CUDA (otherwise it will take 15 minutes) device = "cuda" tilenet = AutoencoderTile.from_pretrained( "wdcqc/starcraft-platform-terrain-32x32", subfolder="tile_vae" ).to(device) pipeline = WaveFunctionDiffusionPipeline.from_pretrained( "wdcqc/starcraft-platform-terrain-32x32", tile_vae = tilenet, wfc_data_path = wfc_data_path ) pipeline.to(device) # Generate pipeline output # need to include the dreambooth keyword "isometric scspace terrain" pipeline_output = pipeline( "isometric scspace terrain, corgi", num_inference_steps = 50, wfc_guidance_start_step = 20, wfc_guidance_strength = 5, wfc_guidance_final_steps = 20, wfc_guidance_final_strength = 10, ) image = pipeline_output.images[0] # Display raw generated image from IPython.display import display display(image) # Display generated image as tiles wave = pipeline_output.waves[0] tile_result = wave.argmax(axis=2) from wfd.scmap import demo_map_image display(demo_map_image(tile_result, wfc_data_path = wfc_data_path)) # Generate map file from wfd.scmap import tiles_to_scx import random, time tiles_to_scx( tile_result, "outputs/generated_{}_{:04d}.scx".format(time.strftime("%Y%m%d_%H%M%S"), random.randint(0, 1e4)), wfc_data_path = wfc_data_path ) # Open the generated map file in `outputs` folder with Scmdraft 2 ```