wath5 commited on
Commit
421c26f
1 Parent(s): 5017222

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +183 -160
README.md CHANGED
@@ -1,13 +1,18 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
10
-
 
11
 
12
  ## Model Details
13
 
@@ -17,13 +22,10 @@ tags: []
17
 
18
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
  ### Model Sources [optional]
29
 
@@ -35,165 +37,186 @@ This is the model card of a 🤗 transformers model that has been pushed on the
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ language:
4
+ - en
5
+ base_model:
6
+ - google/gemma-2-9b-it
7
+ pipeline_tag: text-classification
8
  ---
9
 
10
  # Model Card for Model ID
11
 
12
  <!-- Provide a quick summary of what the model is/does. -->
13
 
14
+ Given a (Query, ModelAAnswer, ModelBAnswer)
15
+ This model gives a vector in 3D like lMSYS (ModelAWin Proba), (ModelBWin Proba), (Tie Proba)
16
 
17
  ## Model Details
18
 
 
22
 
23
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
24
 
25
+ - **Developed by:** @sayoulala (Yang Zhou)
26
+
27
+ - **Model type:** Gemma for Sentence Classification
28
+ - **Language(s) (NLP):** English Only
 
 
 
29
 
30
  ### Model Sources [optional]
31
 
 
37
 
38
  ## Uses
39
 
40
+ Mimic human preference given a query and 2 different answers.
41
 
42
  ### Direct Use
43
 
44
+ ```python
45
+ import torch
46
+ from torch import nn
47
+ from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
48
+ from transformers import Gemma2PreTrainedModel,Gemma2Model
49
+ from transformers.modeling_outputs import SequenceClassifierOutputWithPast
50
+ from typing import Optional, List, Union, Tuple
51
+ from dataclasses import dataclass
52
+
53
+ @dataclass
54
+ class Config:
55
+ gemma_dir = 'wath5/kgl_lmsys_pref_classif'
56
+ max_length = 2000
57
+ batch_size = 8
58
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
59
+
60
+ cfg = Config()
61
+
62
+ class Gemma2ForSequenceClassificationV1(Gemma2PreTrainedModel):
63
+ def __init__(self, config):
64
+ super().__init__(config)
65
+ self.num_labels = config.num_labels
66
+ self.model = Gemma2Model(config)
67
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
68
+
69
+ # Initialize weights and apply final processing
70
+ self.post_init()
71
+
72
+ def get_input_embeddings(self):
73
+ return self.model.embed_tokens
74
+
75
+ def set_input_embeddings(self, value):
76
+ self.model.embed_tokens = value
77
+
78
+ def forward(
79
+ self,
80
+ input_ids: torch.LongTensor = None,
81
+ attention_mask: Optional[torch.Tensor] = None,
82
+ position_ids: Optional[torch.LongTensor] = None,
83
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
84
+ inputs_embeds: Optional[torch.FloatTensor] = None,
85
+ labels: Optional[torch.LongTensor] = None,
86
+ use_cache: Optional[bool] = None,
87
+ output_attentions: Optional[bool] = None,
88
+ output_hidden_states: Optional[bool] = None,
89
+ return_dict: Optional[bool] = None,
90
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
91
+ r"""
92
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
93
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
94
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
95
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
96
+ """
97
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
98
+
99
+ transformer_outputs = self.model(
100
+ input_ids,
101
+ attention_mask=attention_mask,
102
+ position_ids=position_ids,
103
+ past_key_values=past_key_values,
104
+ inputs_embeds=inputs_embeds,
105
+ use_cache=use_cache,
106
+ output_attentions=output_attentions,
107
+ output_hidden_states=output_hidden_states,
108
+ return_dict=return_dict,
109
+ )
110
+ hidden_states = transformer_outputs[0]
111
+ # logits = self.score(hidden_states)
112
+
113
+ if input_ids is not None:
114
+ batch_size = input_ids.shape[0]
115
+ else:
116
+ batch_size = inputs_embeds.shape[0]
117
+
118
+ if self.config.pad_token_id is None and batch_size != 1:
119
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
120
+ if self.config.pad_token_id is None:
121
+ sequence_lengths = -1
122
+ else:
123
+ if input_ids is not None:
124
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
125
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
126
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
127
+ sequence_lengths = sequence_lengths.to(hidden_states.device)
128
+ else:
129
+ sequence_lengths = -1
130
+ hidden_states = hidden_states[
131
+ torch.arange(batch_size, device=hidden_states.device), sequence_lengths] # eos
132
+ pooled_logits = self.score(hidden_states)
133
+
134
+ return pooled_logits
135
+
136
+
137
+ tokenizer = AutoTokenizer.from_pretrained("/kaggle/input/v7-dpo-16bit-01234-8bit-all/v7_dpo_16bit_01234_8bit_all")
138
+
139
+ model = Gemma2ForSequenceClassificationV1.from_pretrained(
140
+ cfg.gemma_dir,
141
+ num_labels=3,
142
+ device_map=cfg.device,
143
+ use_cache=False,
144
+ )
145
+ model.config.pad_token_id = tokenizer.pad_token_id
146
+ ```
147
 
 
 
 
 
 
 
 
 
 
148
 
149
  ## How to Get Started with the Model
150
 
151
+ ```python
152
+ from transformers.data.data_collator import pad_without_fast_tokenizer_warning
153
+
154
+ @torch.no_grad()
155
+ def single_prompt_inference(prompt, model, device, max_length=cfg.max_length):
156
+ """
157
+ Perform inference on a single prompt.
158
+
159
+ Args:
160
+ prompt (str): The input prompt for inference.
161
+ model (torch.nn.Module): The model used for inference.
162
+ device (torch.device): The device to run inference on.
163
+ tokenizer (Tokenizer): Tokenizer for preprocessing input text.
164
+ max_length (int): Maximum sequence length for tokenization.
165
+
166
+ Returns:
167
+ dict: Probabilities for "a_win", "b_win", and "tie".
168
+ """
169
+ # Tokenize the input prompt
170
+ input_ids = tokenizer(prompt, truncation=True, max_length=max_length)['input_ids']
171
+ input_ids.append(tokenizer.eos_token_id) # Add EOS token if needed
172
+
173
+ # Prepare inputs
174
+ inputs = pad_without_fast_tokenizer_warning(
175
+ tokenizer,
176
+ {"input_ids": [input_ids]}, # Wrap in a list for compatibility
177
+ padding="max_length",
178
+ pad_to_multiple_of=None,
179
+ max_length=max_length,
180
+ return_tensors="pt",
181
+ )
182
+
183
+ # Move inputs to the appropriate device
184
+ inputs = inputs.to(device)
185
+
186
+ # Run the model
187
+ outputs = model(**inputs)
188
+
189
+ # Get probabilities using softmax
190
+ proba = outputs.softmax(-1).cpu().squeeze()
191
+
192
+ return {
193
+ "winner_model_a": proba[0].item(),
194
+ "winner_model_b": proba[1].item(),
195
+ "tie": proba[2].item(),
196
+ }
197
+
198
+
199
+ def create_rounds(query: str,
200
+ answer_a: str,
201
+ answer_b: str) -> str:
202
+ prompt =f"""User question:
203
+ \"""{query}\"""
204
+ Answer A:
205
+ \"""{answer_a}\"""
206
+ Answer B:
207
+ \"""{answer_b}\"""
208
+ """
209
+ return prompt
210
+
211
+ query = "Hello, what is the height of the reassembled blind product?"
212
+ answer_a = "Vous pouvez trouver toutes les informations techniques, y compris la hauteur du produit store remonté, directement sur la fiche produit de notre site. Cliquez sur l'onglet 'Produits' dnas la barre de navigation ou utilisez le moteur de recherche pour accéder au produit recherché. Avez vous une autre question ?"
213
+ answer_b = "The height of the aluminum Venetian blind is 130 cm."
214
+ prompt_direct = create_rounds(query, answer_a, answer_b)
215
+
216
+ single_prompt_inference(prompt_direct, model=model, device=cfg.device)
217
+ ```
218
 
219
  ## Training Details
220
 
221
+ https://github.com/shyoulala/LMSYS_BlackPearl
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222