--- library_name: transformers license: llama3.2 base_model: NousResearch/Llama-3.2-1B tags: - alignment-handbook - generated_from_trainer datasets: - HuggingFaceH4/ultrachat_200k model-index: - name: llama-3-2-1b-sft results: [] --- # llama-3-2-1b-sft This model is a fine-tuned version of [NousResearch/Llama-3.2-1B](https://huggingface.co/NousResearch/Llama-3.2-1B) on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set: - Loss: 1.2759 See the training yaml https://github.com/wassname/SimPO/blob/main/training_configs/llama-3-2-1b-base-sft.yaml ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3663 | 0.0534 | 200 | 1.3955 | | 1.3413 | 0.1069 | 400 | 1.3722 | | 1.365 | 0.1603 | 600 | 1.3632 | | 1.33 | 0.2138 | 800 | 1.3532 | | 1.3219 | 0.2672 | 1000 | 1.3463 | | 1.3355 | 0.3207 | 1200 | 1.3391 | | 1.334 | 0.3741 | 1400 | 1.3305 | | 1.3183 | 0.4276 | 1600 | 1.3233 | | 1.334 | 0.4810 | 1800 | 1.3161 | | 1.3013 | 0.5345 | 2000 | 1.3087 | | 1.3156 | 0.5879 | 2200 | 1.3016 | | 1.3092 | 0.6414 | 2400 | 1.2953 | | 1.2518 | 0.6948 | 2600 | 1.2895 | | 1.2617 | 0.7483 | 2800 | 1.2846 | | 1.3041 | 0.8017 | 3000 | 1.2809 | | 1.3102 | 0.8552 | 3200 | 1.2781 | | 1.2675 | 0.9086 | 3400 | 1.2765 | | 1.2978 | 0.9621 | 3600 | 1.2759 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0