Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- IteraTeR_full_sent
|
4 |
+
---
|
5 |
+
|
6 |
+
# IteraTeR RoBERTa model
|
7 |
+
This model was obtained by fine-tuning [roberta-large](https://huggingface.co/roberta-large) on [IteraTeR-human-sent](https://huggingface.co/datasets/wanyu/IteraTeR_human_sent) dataset.
|
8 |
+
|
9 |
+
Paper: [Understanding Iterative Revision from Human-Written Text](https://arxiv.org/abs/2203.03802) <br>
|
10 |
+
Authors: Wanyu Du, Vipul Raheja, Dhruv Kumar, Zae Myung Kim, Melissa Lopez, Dongyeop Kang
|
11 |
+
|
12 |
+
## Usage
|
13 |
+
```python
|
14 |
+
import torch
|
15 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
16 |
+
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained("wanyu/IteraTeR-ROBERTA")
|
18 |
+
model = AutoModelForSequenceClassification.from_pretrained("wanyu/IteraTeR-ROBERTA")
|
19 |
+
|
20 |
+
id2label = {0: "clarity", 1: "fluency", 2: "coherence", 3: "style", 4: "meaning-changed"}
|
21 |
+
|
22 |
+
before_text = 'I likes coffee.'
|
23 |
+
after_text = 'I like coffee.'
|
24 |
+
model_input = tokenizer(before_text, after_text, return_tensors='pt')
|
25 |
+
model_output = model(**model_input)
|
26 |
+
softmax_scores = torch.softmax(model_output.logits, dim=-1)
|
27 |
+
pred_id = torch.argmax(softmax_scores)
|
28 |
+
pred_label = id2label[pred_id.int()]
|
29 |
+
```
|