--- license: apache-2.0 datasets: - shareAI/ShareGPT-Chinese-English-90k language: - zh - en pipeline_tag: text-generation --- ![](./assets/aurora.png)

Aurora: Activating chinese chat capability for Mistral-8x7B sparse Mixture-of-Experts through Instruction-Tuning

1.

Please follow our Github: https://github.com/WangRongsheng/Aurora

2.

Please follow our Paper: https://arxiv.org/abs/2312.14557

## Overview Existing research has demonstrated that refining large language models (LLMs) through the utilization of machine-generated instruction-following data empowers these models to exhibit impressive zero-shot capabilities for novel tasks, without requiring human-authored instructions. In this paper, we systematically investigate, preprocess, and integrate three Chinese instruction-following datasets with the aim of enhancing the Chinese conversational capabilities of Mixtral-8x7B sparse Mixture-of-Experts model. Through instruction fine-tuning on this carefully processed dataset, we successfully construct the Mixtral-8x7B sparse Mixture-of-Experts model named "Aurora." To assess the performance of Aurora, we utilize three widely recognized benchmark tests: C-Eval, MMLU, and CMMLU. Empirical studies validate the effectiveness of instruction fine-tuning applied to Mixtral-8x7B sparse Mixture-of-Experts model. This work is pioneering in the execution of instruction fine-tuning on a sparse expert-mixed model, marking a significant breakthrough in enhancing the capabilities of this model architecture. ![](./training_loss.png) ## Usage ```python import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer from threading import Thread from peft import PeftModel import time model_name_or_path = "mistralai/Mixtral-8x7B-Instruct-v0.1" # download weights from https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1 lora_weights = "wangrongsheng/Aurora" # download weights from https://huggingface.co/wangrongsheng/Aurora tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model0 = AutoModelForCausalLM.from_pretrained(model_name_or_path, load_in_4bit=True, device_map="auto", torch_dtype=torch.bfloat16) model = PeftModel.from_pretrained( model0, lora_weights, ) class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: stop_ids = [0,] for stop_id in stop_ids: if input_ids[0][-1] == stop_id: return True return False def convert_history_to_text(history): text = "" if len(history) > 1: text = " " + "".join( [ "".join( [ f"[INST]{item[0]}[/INST] {item[1]} ", ] ) for item in history[:-1] ] ) + " " text += "".join( [ "".join( [ f"[INST]{history[-1][0]}[/INST]", ] ) ] ) return text def predict(message, history): history_transformer_format = history + [[message, ""]] stop = StopOnTokens() messages = convert_history_to_text(history_transformer_format) model_inputs = tokenizer([messages], return_tensors="pt").to("cuda") streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=4096, do_sample=True, top_p=0.95, top_k=1000, temperature=1.0, num_beams=1, pad_token_id=tokenizer.eos_token_id, stopping_criteria=StoppingCriteriaList([stop]) ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() partial_message = "" t1 = time.time() count = 0 for new_token in streamer: if new_token != '<': partial_message += new_token count += 1 yield partial_message t2 = time.time() speed = count/(t2-t1) print("inference speed: %f tok/s" % speed) gr.ChatInterface(predict,chatbot=gr.Chatbot(height=600,),title="MoE").queue().launch() ``` ## Citation If you find our work helpful, feel free to give us a cite. ```latex @misc{wang2023auroraactivating, title={Aurora:Activating Chinese chat capability for Mixtral-8x7B sparse Mixture-of-Experts through Instruction-Tuning}, author={Rongsheng Wang and Haoming Chen and Ruizhe Zhou and Yaofei Duan and Kunyan Cai and Han Ma and Jiaxi Cui and Jian Li and Patrick Cheong-Iao Pang and Yapeng Wang and Tao Tan}, year={2023}, eprint={2312.14557}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```