---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: mistralai/Mixtral-8x7B-v0.1
model-index:
- name: Mixtral-8x7b-Remixtral
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.3.0`
```yaml
base_model: mistralai/Mixtral-8x7B-v0.1
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: Open-Orca/SlimOrca
type: sharegpt
conversation: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.005
output_dir: /wb-mixtral/slimorca-mixstral-8x7b
save_total_limit: 1
hub_model_id:
dataloader_num_workers: 8
dataloader_prefetch_factor: 4
dataloader_pin_memory: true
adapter: qlora
lora_model_dir:
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
lora_r: 64
lora_alpha: 32
lora_dropout: 0.1
lora_fan_in_fan_out:
lora_modules_to_save:
- lm_head
- embed_tokens
lora_target_linear: true
wandb_project: mixtral
wandb_entity: capecape
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.001
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
eval_steps: 0.05
save_steps: 0.25
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
eos_token: "<|im_end|>"
tokens:
- "<|im_start|>"
```
# Mixtral-8x7b-Remixtral
This model is a fine-tuned version of [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 25
- num_epochs: 2
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.1+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.6.0