import os import sys import copy import pickle import ipdb import torch import numpy as np sys.path.insert(0, os.getcwd()) from lib.utils.utils_data import split_clips from tqdm import tqdm fileName = open('data/AMASS/amass_joints_h36m_60.pkl','rb') joints_all = pickle.load(fileName) joints_cam = [] vid_list = [] vid_len_list = [] scale_factor = 0.298 for i, item in enumerate(joints_all): # (17,N,3): item = item.astype(np.float32) vid_len = item.shape[1] vid_len_list.append(vid_len) for _ in range(vid_len): vid_list.append(i) real2cam = np.array([[1,0,0], [0,0,1], [0,-1,0]], dtype=np.float32) item = np.transpose(item, (1,0,2)) # (17,N,3) -> (N,17,3) motion_cam = item @ real2cam motion_cam *= scale_factor # motion_cam = motion_cam - motion_cam[0,0,:] joints_cam.append(motion_cam) joints_cam_all = np.vstack(joints_cam) split_id = datareader.split_clips(vid_list, n_frames=243, data_stride=81) print(joints_cam_all.shape) # (N,17,3) max_x, minx_x = np.max(joints_cam_all[:,:,0]), np.min(joints_cam_all[:,:,0]) max_y, minx_y = np.max(joints_cam_all[:,:,1]), np.min(joints_cam_all[:,:,1]) max_z, minx_z = np.max(joints_cam_all[:,:,2]), np.min(joints_cam_all[:,:,2]) print(max_x, minx_x) print(max_y, minx_y) print(max_z, minx_z) joints_cam_clip = joints_cam_all[split_id] print(joints_cam_clip.shape) # (N,27,17,3) # np.save('doodle/joints_cam_clip_amass_60.npy', joints_cam_clip) root_path = "data/motion3d/MB3D_f243s81/AMASS" subset_name = "train" save_path = os.path.join(root_path, subset_name) if not os.path.exists(save_path): os.makedirs(save_path) num_clips = len(joints_cam_clip) for i in tqdm(range(num_clips)): motion = joints_cam_clip[i] data_dict = { "data_input": None, "data_label": motion } with open(os.path.join(save_path, "%08d.pkl" % i), "wb") as myprofile: pickle.dump(data_dict, myprofile)