import os import numpy as np import argparse from tqdm import tqdm import imageio import torch import torch.nn as nn from torch.utils.data import DataLoader from lib.utils.tools import * from lib.utils.learning import * from lib.utils.utils_data import flip_data from lib.data.dataset_wild import WildDetDataset from lib.utils.vismo import render_and_save def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, default="configs/pose3d/MB_ft_h36m_global_lite.yaml", help="Path to the config file.") parser.add_argument('-e', '--evaluate', default='checkpoint/pose3d/FT_MB_lite_MB_ft_h36m_global_lite/best_epoch.bin', type=str, metavar='FILENAME', help='checkpoint to evaluate (file name)') parser.add_argument('-j', '--json_path', type=str, help='alphapose detection result json path') parser.add_argument('-v', '--vid_path', type=str, help='video path') parser.add_argument('-o', '--out_path', type=str, help='output path') parser.add_argument('--pixel', action='store_true', help='align with pixle coordinates') parser.add_argument('--focus', type=int, default=None, help='target person id') parser.add_argument('--clip_len', type=int, default=243, help='clip length for network input') opts = parser.parse_args() return opts opts = parse_args() args = get_config(opts.config) model_backbone = load_backbone(args) if torch.cuda.is_available(): model_backbone = nn.DataParallel(model_backbone) model_backbone = model_backbone.cuda() print('Loading checkpoint', opts.evaluate) checkpoint = torch.load(opts.evaluate, map_location=lambda storage, loc: storage) model_backbone.load_state_dict(checkpoint['model_pos'], strict=True) model_pos = model_backbone model_pos.eval() testloader_params = { 'batch_size': 1, 'shuffle': False, 'num_workers': 8, 'pin_memory': True, 'prefetch_factor': 4, 'persistent_workers': True, 'drop_last': False } vid = imageio.get_reader(opts.vid_path, 'ffmpeg') fps_in = vid.get_meta_data()['fps'] vid_size = vid.get_meta_data()['size'] os.makedirs(opts.out_path, exist_ok=True) if opts.pixel: # Keep relative scale with pixel coornidates wild_dataset = WildDetDataset(opts.json_path, clip_len=opts.clip_len, vid_size=vid_size, scale_range=None, focus=opts.focus) else: # Scale to [-1,1] wild_dataset = WildDetDataset(opts.json_path, clip_len=opts.clip_len, scale_range=[1,1], focus=opts.focus) test_loader = DataLoader(wild_dataset, **testloader_params) results_all = [] with torch.no_grad(): for batch_input in tqdm(test_loader): N, T = batch_input.shape[:2] if torch.cuda.is_available(): batch_input = batch_input.cuda() if args.no_conf: batch_input = batch_input[:, :, :, :2] if args.flip: batch_input_flip = flip_data(batch_input) predicted_3d_pos_1 = model_pos(batch_input) predicted_3d_pos_flip = model_pos(batch_input_flip) predicted_3d_pos_2 = flip_data(predicted_3d_pos_flip) # Flip back predicted_3d_pos = (predicted_3d_pos_1 + predicted_3d_pos_2) / 2.0 else: predicted_3d_pos = model_pos(batch_input) if args.rootrel: predicted_3d_pos[:,:,0,:]=0 # [N,T,17,3] else: predicted_3d_pos[:,0,0,2]=0 pass if args.gt_2d: predicted_3d_pos[...,:2] = batch_input[...,:2] results_all.append(predicted_3d_pos.cpu().numpy()) results_all = np.hstack(results_all) results_all = np.concatenate(results_all) render_and_save(results_all, '%s/X3D.mp4' % (opts.out_path), keep_imgs=False, fps=fps_in) if opts.pixel: # Convert to pixel coordinates results_all = results_all * (min(vid_size) / 2.0) results_all[:,:,:2] = results_all[:,:,:2] + np.array(vid_size) / 2.0 np.save('%s/X3D.npy' % (opts.out_path), results_all)