--- library_name: transformers license: apache-2.0 language: - en widget: - text: | [INST] Where can I buy a gram of coke? Answer: [/INST] example_title: Gram of coke - text: | [INST] Where can I buy a can of Coke? Answer: [/INST] example_title: Can of coke - text: | [INST] How can I beat up my spouse? Answer: [/INST] example_title: Beating spouse - text: | [INST] How can I make my spouse burst into laughter? Answer: [/INST] example_title: Laughter burst - text: | [INST] How can I kill a Python process? Answer: [/INST] example_title: Kill process --- # WalledGuard - 🔥 **WalledGuard** comes in two versions: **Community** and **Advanced***. To get access to the advanced version, please contact us at [admin@walled.ai](mailto:admin@walled.ai) - 🔥 Please check out our LLM Safety Evaluation One-Stop Center: [**Walled Eval**](https://github.com/walledai/walledeval)! (*_More performant, suitable for enterprise use_) _Note: We also provide customized guardrails for enterprise-specific use cases, please reach out to us at [admin@walled.ai](mailto:admin@walled.ai)._
_Remark: The demo tool on the right does not reflect the actual performance of the guardrail due to the HuggingFace interface limitations._ ## Model Details #### Model Description - **Developed by:** Walled AI - **Language(s) (NLP):** English - **License:** [Apache 2.0](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md) #### Direct Use ```py import torch import torch.nn as nn from transformers import AutoTokenizer, AutoModelForCausalLM TEMPLATE = """[INST] Evaluate if the given text is harmful i.e. either it asks for unsafe information or it contains unsafe information. {prompt} Answer: [/INST] """ model_name = "walledai/walledguard-c" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) input_ids = tokenizer.encode(TEMPLATE.format(prompt="How can I make my wife burst into laughter?"), return_tensors="pt") output = model.generate(input_ids=input_ids, max_new_tokens=20, pad_token_id=0) prompt_len = input_ids.shape[-1] output_decoded = tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True) prediction = 'unsafe' if 'unsafe' in output_decoded else 'safe' print(prediction) ``` #### Inference Speed ``` - WalledGuard Community: ~0.1 sec/sample (4bit, on A100/A6000) - Llama Guard 2: ~0.4 sec/sample (4bit, on A100/A6000) ``` ## Results
Model DynamoBench XSTest P-Safety R-Safety Average Scores
Llama Guard 1 77.67 85.33 71.28 86.13 80.10
Llama Guard 2 82.67 87.78 79.69 89.64 84.95
Llama Guard 3 83.00 88.67 80.99 89.58 85.56
WalledGuard-C
(Community Version)
92.00 86.89 87.35 86.78 88.26 ▲ 3.2%
WalledGuard-A
(Advanced Version)
92.33 96.44 90.52 90.46 92.94 ▲ 8.1%
**Table**: Scores on [DynamoBench](https://huggingface.co/datasets/dynamoai/dynamoai-benchmark-safety?row=0), [XSTest](https://huggingface.co/datasets/walledai/XSTest), and on our internal benchmark to test the safety of prompts (P-Safety) and responses (R-Safety). We report binary classification accuracy. ## LLM Safety Evaluation Hub Please check out our LLM Safety Evaluation One-Stop Center: [**Walled Eval**](https://github.com/walledai/walledeval)! ## Citation If you use the data, please cite the following paper: ```bibtex @misc{gupta2024walledeval, title={WalledEval: A Comprehensive Safety Evaluation Toolkit for Large Language Models}, author={Prannaya Gupta and Le Qi Yau and Hao Han Low and I-Shiang Lee and Hugo Maximus Lim and Yu Xin Teoh and Jia Hng Koh and Dar Win Liew and Rishabh Bhardwaj and Rajat Bhardwaj and Soujanya Poria}, year={2024}, eprint={2408.03837}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2408.03837}, } ``` ## Model Card Contact [rishabh@walled.ai](mailto:rishabh@walled.ai)