--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.808641975308642 --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5712 - Accuracy: 0.8086 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.87 | 5 | 1.3767 | 0.5370 | | 1.289 | 1.91 | 11 | 1.3503 | 0.5494 | | 1.289 | 2.96 | 17 | 1.3712 | 0.5556 | | 1.0376 | 4.0 | 23 | 1.3064 | 0.5556 | | 1.0376 | 4.87 | 28 | 1.1062 | 0.5802 | | 0.8346 | 5.91 | 34 | 0.9249 | 0.6481 | | 0.7096 | 6.96 | 40 | 0.8947 | 0.6235 | | 0.7096 | 8.0 | 46 | 0.8626 | 0.6543 | | 0.6356 | 8.87 | 51 | 0.6820 | 0.7222 | | 0.6356 | 9.91 | 57 | 0.7249 | 0.7346 | | 0.5956 | 10.96 | 63 | 0.6818 | 0.7407 | | 0.5956 | 12.0 | 69 | 0.6111 | 0.7840 | | 0.5534 | 12.87 | 74 | 0.6026 | 0.7778 | | 0.519 | 13.91 | 80 | 0.6070 | 0.7901 | | 0.519 | 14.96 | 86 | 0.5758 | 0.7963 | | 0.5117 | 16.0 | 92 | 0.5791 | 0.7840 | | 0.5117 | 16.87 | 97 | 0.5711 | 0.8025 | | 0.4913 | 17.39 | 100 | 0.5712 | 0.8086 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2