--- license: apache-2.0 base_model: facebook/convnextv2-nano-22k-384 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: convnext-nano-5ep-batch-16 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.917063492063492 --- # convnext-nano-5ep-batch-16 This model is a fine-tuned version of [facebook/convnextv2-nano-22k-384](https://huggingface.co/facebook/convnextv2-nano-22k-384) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3835 - Accuracy: 0.9171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.575 | 1.0 | 550 | 0.5743 | 0.8250 | | 0.3134 | 2.0 | 1100 | 0.4706 | 0.8680 | | 0.1174 | 3.0 | 1650 | 0.4487 | 0.8863 | | 0.017 | 4.0 | 2200 | 0.3822 | 0.9129 | | 0.0118 | 5.0 | 2750 | 0.3802 | 0.9137 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2