--- license: apache-2.0 base_model: microsoft/swinv2-tiny-patch4-window16-256 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: SwinV2-30VNFood results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8771825396825397 --- # SwinV2-30VNFood This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window16-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window16-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4561 - Accuracy: 0.8772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7587 | 1.0 | 275 | 0.5447 | 0.8477 | | 0.4341 | 2.0 | 550 | 0.4809 | 0.8640 | | 0.2737 | 3.0 | 825 | 0.4703 | 0.8763 | | 0.1704 | 4.0 | 1100 | 0.5040 | 0.8791 | | 0.1225 | 5.0 | 1375 | 0.4893 | 0.8879 | | 0.0886 | 6.0 | 1650 | 0.5733 | 0.8863 | | 0.0568 | 7.0 | 1925 | 0.5986 | 0.8803 | | 0.0407 | 8.0 | 2200 | 0.5664 | 0.8998 | | 0.0175 | 9.0 | 2475 | 0.5790 | 0.8998 | | 0.0175 | 10.0 | 2750 | 0.5754 | 0.9038 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2