from openvino.runtime import Core from tqdm import tqdm import torch from collections import OrderedDict from pathlib import Path import numpy as np from collections import Counter import os QDTYPE_SPECIAL_VALUES={ 'u4': [0, 1, 2, 4, 8], 'u8': [0, 1, 2, 4, 8, 16, 32, 64, 128], 'int8': [-1, -2, -4, -8, -16, -32, -64, -128, 0, 1, 2, 4, 8, 16, 32, 64] } zero_point_map = { 'u4': 8, 'u8': 128, 'int8': 0, } def get_uniq_value_stats(tensor, q_dtype): if q_dtype not in QDTYPE_SPECIAL_VALUES.keys(): raise NotImplementedError(f"Unsupported q_dtype {q_dtype}") value_counts = Counter(tensor.flatten()) total_elements = sum(value_counts.values()) top1_val, top1_count = value_counts.most_common(1)[0] top1_tuple = (top1_val, top1_count/total_elements) # Calculate ratio for each value count_ratio_dict = {value: {'count': count, 'ratio': count / total_elements} for value, count in value_counts.items()} # # Find unique elements and their counts # unique_values, counts = np.unique(tensor, return_counts=True) # # Calculate the total number of elements in the tensor # total_elements = tensor.size # # Calculate the relative ratio for each unique value # ratios = counts / total_elements special_value_count = 0 special_value_ratio = 0 sparsity = 0 zero_count = 0 # for value, count, ratio in zip(unique_values, counts, ratios): for value, vdict in count_ratio_dict.items(): count = vdict['count'] ratio = vdict['ratio'] if value == zero_point_map[q_dtype]: sparsity = ratio zero_count = count # zero will enter both above and below if value in QDTYPE_SPECIAL_VALUES[q_dtype]: special_value_count += count special_value_ratio += ratio return dict( numel=total_elements, sparsity=sparsity, special_value_ratio=special_value_ratio, top1=top1_tuple, raw=count_ratio_dict ) def get_ir_pair(model_dir): p = Path(model_dir) return p/"openvino_model.xml", p/"openvino_model.bin" # fc_numel = { # 'llama-2-chat-7b ': {'min': 16777216, 'max': 45088768}, # 'mistral-7b ': {'min': 4194304, 'max': 58720256}, # 'gemma-2b-it': {'min': 524288, 'max': 33554432}, # } fc_numel = { 'llama-2-chat-7b': [16777216, 45088768], 'mistral-7b': [4194304, 16777216, 58720256], 'gemma-2b-it': [524288, 4194304, 33554432], } ovir_folder = "stable-diffusion-pokemons-1-5-quantized/unet" # model_key = compressed_weight_folder.split("/")[2] ir_xml, ir_bin = get_ir_pair(ovir_folder) ie = Core() ir_model = ie.read_model(ir_xml) model_params = OrderedDict() csv_path = os.path.join(ovir_folder, "weight_dist.csv") with open(csv_path, "w") as outfile: outfile.write("layer,dtype,w_ndim,shape,numel,sparsity,special_val_ratio,top1_val_ratio,top1_val\n") # for op in tqdm(ir_model.get_ordered_ops()): for op in ir_model.get_ordered_ops(): if 'constant' in str(op.get_type_info()).lower(): shape = tuple(op.get_output_shape(0)) numel = np.prod(shape) if op.data.dtype.name == "int8": # print(f"{numel:15} | {str(shape):20} | {op.get_name():20} | {op.data.dtype.name}") layer = op.get_name() q_dtype = op.data.dtype.name # model_params[layer] = {} statdict = get_uniq_value_stats(op.data, op.data.dtype.name) # print("joto") # q_mode = "sym" if attr['q_zero_point'][0] == zero_point_map[attr['q_dtype']] else "asym" # is_top1_zero_point = "zero_point" if statdict['top1'][0] == zero_point_map[attr['q_dtype']] else statdict['top1'][0] # zero point is per channel per group # print(f"{layer:30} | {attr['q_dtype']} ({q_mode:>5}) | orig. shape: {str(attr['original_shape']):15} | numel: {statdict['numel']:>15,} | sparsity: {statdict['sparsity']:.2f} | special ratio: {statdict['special_value_ratio']:.2f} | top1 ratio: {statdict['top1'][1]:.2f} ({is_top1_zero_point:>10}) |") print(f"{layer:30} | {q_dtype} | orig. shape: {str(shape):20} | numel: {statdict['numel']:>15,} | sparsity: {statdict['sparsity']:.2f} | special ratio: {statdict['special_value_ratio']:.2f} | top1 ratio: {statdict['top1'][1]:.2f} (val: {statdict['top1'][0]})") shape_str = str(shape).replace(", "," x ") outfile.write(f"{layer:>25},{q_dtype},{len(shape)},{shape_str:20},{statdict['numel']:>15},{statdict['sparsity']:.4f},{statdict['special_value_ratio']:.4f},{statdict['top1'][1]:.4f},{statdict['top1'][0]}\n") print('Done!')