--- base_model: facebook/w2v-bert-2.0 license: mit metrics: - wer model-index: - name: W2V2-BERT-withLM-Malayalam by Bajiyo Baiju, Kavya Manohar results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: OpenSLR Malayalam -Test type: vrclc/openslr63 config: ml split: test args: ml metrics: - type: wer value: 18.23 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Google Fleurs type: google/fleurs config: ml split: test args: ml metrics: - type: wer value: 31.92 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Mozilla Common Voice type: mozilla-foundation/common_voice_16_1 config: ml split: test args: ml metrics: - type: wer value: 49.79 name: WER datasets: - vrclc/festvox-iiith-ml - vrclc/openslr63 - vrclc/imasc_slr - mozilla-foundation/common_voice_17_0 - smcproject/MSC - kavyamanohar/ml-sentences - thennal/IMaSC language: - ml pipeline_tag: automatic-speech-recognition --- # W2V2-BERT-withLM-Malayalam This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the [IMASC](https://huggingface.co/datasets/thennal/IMaSC), [MSC](https://huggingface.co/datasets/smcproject/MSC), [OpenSLR Malayalam Train split](https://huggingface.co/datasets/vrclc/openslr63), [Festvox Malayalam](https://huggingface.co/datasets/vrclc/openslr63), [CV16](https://huggingface.co/datasets/mozilla-foundation/common_voice_16_0) . It achieves the following results on the validation set : [OpenSLR-Test](https://huggingface.co/vrclc/openslr63): - Loss: 0.1722 - Wer: 0.1299 Trigram Language Model Trained using KENLM Library on [kavyamanohar/ml-sentences](https://huggingface.co/datasets/kavyamanohar/ml-sentences) dataset ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.1416 | 0.46 | 600 | 0.3393 | 0.4616 | | 0.1734 | 0.92 | 1200 | 0.2414 | 0.3493 | | 0.1254 | 1.38 | 1800 | 0.2205 | 0.2963 | | 0.1097 | 1.84 | 2400 | 0.2157 | 0.3133 | | 0.0923 | 2.3 | 3000 | 0.1854 | 0.2473 | | 0.0792 | 2.76 | 3600 | 0.1939 | 0.2471 | | 0.0696 | 3.22 | 4200 | 0.1720 | 0.2282 | | 0.0589 | 3.68 | 4800 | 0.1768 | 0.2013 | | 0.0552 | 4.14 | 5400 | 0.1635 | 0.1864 | | 0.0437 | 4.6 | 6000 | 0.1501 | 0.1826 | | 0.0408 | 5.06 | 6600 | 0.1500 | 0.1645 | | 0.0314 | 5.52 | 7200 | 0.1559 | 0.1655 | | 0.0317 | 5.98 | 7800 | 0.1448 | 0.1553 | | 0.022 | 6.44 | 8400 | 0.1592 | 0.1590 | | 0.0218 | 6.9 | 9000 | 0.1431 | 0.1458 | | 0.0154 | 7.36 | 9600 | 0.1514 | 0.1366 | | 0.0141 | 7.82 | 10200 | 0.1540 | 0.1383 | | 0.0113 | 8.28 | 10800 | 0.1558 | 0.1391 | | 0.0085 | 8.74 | 11400 | 0.1612 | 0.1356 | | 0.0072 | 9.2 | 12000 | 0.1697 | 0.1289 | | 0.0046 | 9.66 | 12600 | 0.1722 | 0.1299 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.1+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1