--- license: apache-2.0 base_model: vpingale07/distilhubert-v2-v4 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: vpingale07/distilhubert-v2-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.88 --- # vpingale07/distilhubert-v2-finetuned-gtzan This model is a fine-tuned version of [vpingale07/distilhubert-v2-v4](https://huggingface.co/vpingale07/distilhubert-v2-v4) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.9254 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0001 | 1.0 | 75 | 0.8660 | 0.88 | | 0.0001 | 2.0 | 150 | 0.9036 | 0.8825 | | 0.0 | 3.0 | 225 | 0.9178 | 0.88 | | 0.0 | 4.0 | 300 | 0.9254 | 0.88 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2