--- language: zh-TW datasets: - common_voice tags: - audio - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Taiwanese Mandarin(zh-tw) by Voidful results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice zh-TW type: common_voice args: zh-TW metrics: - name: Test CER type: cer value: 18.36 --- # Wav2Vec2-Large-XLSR-53-tw-gpt Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on zh-tw using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage [Colab trial](https://colab.research.google.com/drive/1e_z5jQHYbO2YKEaUgzb1ww1WwiAyydAj?usp=sharing) ``` import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, AutoTokenizer, AutoModelWithLMHead ) import torch import re import sys model_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt" device = "cuda" processor_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt" chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\"#$%&()*+,\-.\:;<=>?@\[\]\\\/^_`{|}~]" model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(processor_name) tokenizer = AutoTokenizer.from_pretrained("ckiplab/gpt2-base-chinese") gpt_model = AutoModelWithLMHead.from_pretrained("ckiplab/gpt2-base-chinese").to(device) resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def load_file_to_data(file): batch = {} speech, _ = torchaudio.load(file) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq return batch def predict(data): features = processor(data["speech"], sampling_rate=data["sampling_rate"], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits decoded_results = [] for logit in logits: pred_ids = torch.argmax(logit, dim=-1) mask = pred_ids.ge(1).unsqueeze(-1).expand(logit.size()) vocab_size = logit.size()[-1] voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1) gpt_input = torch.cat((torch.tensor([tokenizer.cls_token_id]).to(device),pred_ids[pred_ids>0]), 0) gpt_prob = torch.nn.functional.softmax(gpt_model(gpt_input).logits, dim=-1)[:voice_prob.size()[0],:] comb_pred_ids = torch.argmax(gpt_prob*voice_prob, dim=-1) decoded_results.append(processor.decode(comb_pred_ids)) return decoded_results ``` Predict ```python predict(load_file_to_data('voice file path')) ``` ## Evaluation The model can be evaluated as follows on the zh-tw test data of Common Voice. CER calculation refer to https://huggingface.co/ctl/wav2vec2-large-xlsr-cantonese env setup: ``` !pip install editdistance !pip install torchaudio !pip install datasets transformers ``` ## Evaluation without LM: ```python import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) import torch import re import sys from transformers import AutoTokenizer, AutoModelWithLMHead from datasets import Audio from math import log model_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt" device = "cuda" processor_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt" chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\"#$%&()*+,\-.\:;<=>?@\[\]\\\/^_`{|}~]" tokenizer = AutoTokenizer.from_pretrained("ckiplab/gpt2-base-chinese") lm_model = AutoModelWithLMHead.from_pretrained("ckiplab/gpt2-base-chinese").to(device) model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(processor_name) ds = load_dataset("common_voice", 'zh-TW', split="test") ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) def map_to_array(batch): audio = batch["audio"] batch["speech"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0] batch["sampling_rate"] = audio["sampling_rate"] batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ds = ds.map(map_to_array) def map_to_pred(batch): features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = processor.batch_decode(pred_ids) batch["target"] = batch["sentence"] return batch result = ds.map(map_to_pred, batched=True, batch_size=3, remove_columns=list(ds.features.keys())) def cer_cal(groundtruth, hypothesis): err = 0 tot = 0 for p, t in zip(hypothesis, groundtruth): err += float(ed.eval(p.lower(), t.lower())) tot += len(t) return err / tot print("CER: {:2f}".format(100 * cer_cal(result["target"],result["predicted"]))) ``` `CER: 28.70`. `TIME: 04:08 min` ## Evaluation with GPT: ```python import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) import torch import re import sys from transformers import AutoTokenizer, AutoModelWithLMHead from datasets import Audio from math import log model_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt" device = "cuda" processor_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt" chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\"#$%&()*+,\-.\:;<=>?@\[\]\\\/^_`{|}~]" tokenizer = AutoTokenizer.from_pretrained("ckiplab/gpt2-base-chinese") lm_model = AutoModelWithLMHead.from_pretrained("ckiplab/gpt2-base-chinese").to(device) model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(processor_name) ds = load_dataset("common_voice", 'zh-TW', split="test") ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) def map_to_array(batch): audio = batch["audio"] batch["speech"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0] batch["sampling_rate"] = audio["sampling_rate"] batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ds = ds.map(map_to_array) def map_to_pred(batch): features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits decoded_results = [] for logit in logits: pred_ids = torch.argmax(logit, dim=-1) mask = pred_ids.ge(1).unsqueeze(-1).expand(logit.size()) vocab_size = logit.size()[-1] voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1) lm_input = torch.cat((torch.tensor([tokenizer.cls_token_id]).to(device),pred_ids[pred_ids>0]), 0) lm_prob = torch.nn.functional.softmax(lm_model(lm_input).logits, dim=-1)[:voice_prob.size()[0],:] comb_pred_ids = torch.argmax(lm_prob*voice_prob, dim=-1) decoded_results.append(processor.decode(comb_pred_ids)) batch["predicted"] = decoded_results batch["target"] = batch["sentence"] return batch result = ds.map(map_to_pred, batched=True, batch_size=3, remove_columns=list(ds.features.keys())) def cer_cal(groundtruth, hypothesis): err = 0 tot = 0 for p, t in zip(hypothesis, groundtruth): err += float(ed.eval(p.lower(), t.lower())) tot += len(t) return err / tot print("CER: {:2f}".format(100 * cer_cal(result["target"],result["predicted"]))) ``` `CER 25.70`. `TIME: 06:04 min` ## Evaluation with GPT + beam search: ```python import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) import torch import re import sys from transformers import AutoTokenizer, AutoModelWithLMHead from datasets import Audio from math import log model_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt" device = "cuda" processor_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt" chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\"#$%&()*+,\-.\:;<=>?@\[\]\\\/^_`{|}~]" tokenizer = AutoTokenizer.from_pretrained("ckiplab/gpt2-base-chinese") lm_model = AutoModelWithLMHead.from_pretrained("ckiplab/gpt2-base-chinese").to(device) model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(processor_name) ds = load_dataset("common_voice", 'zh-TW', split="test") ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) def map_to_array(batch): audio = batch["audio"] batch["speech"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0] batch["sampling_rate"] = audio["sampling_rate"] batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ds = ds.map(map_to_array) def map_to_pred(batch): features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits decoded_results = [] for logit in logits: sequences = [[[], 1.0]] pred_ids = torch.argmax(logit, dim=-1) mask = pred_ids.ge(1).unsqueeze(-1).expand(logit.size()) vocab_size = logit.size()[-1] voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1) while True: all_candidates = list() exceed = False for seq in sequences: tokens, score = seq gpt_input = torch.tensor([tokenizer.cls_token_id]+tokens).to(device) gpt_prob = torch.nn.functional.softmax(lm_model(gpt_input).logits, dim=-1)[:len(gpt_input),:] if len(gpt_input) >= len(voice_prob): exceed = True comb_pred_ids = gpt_prob*voice_prob[:len(gpt_input)] v,i = torch.topk(comb_pred_ids,50,dim=-1) for tok_id,tok_prob in zip(i.tolist()[-1],v.tolist()[-1]): candidate = [tokens + [tok_id], score + -log(tok_prob)] all_candidates.append(candidate) ordered = sorted(all_candidates, key=lambda tup: tup[1]) sequences = ordered[:10] if exceed: break decoded_results.append(processor.decode(sequences[0][0])) batch["predicted"] = decoded_results batch["target"] = batch["sentence"] return batch result = ds.map(map_to_pred, batched=True, batch_size=3, remove_columns=list(ds.features.keys())) def cer_cal(groundtruth, hypothesis): err = 0 tot = 0 for p, t in zip(hypothesis, groundtruth): err += float(ed.eval(p.lower(), t.lower())) tot += len(t) return err / tot print("CER: {:2f}".format(100 * cer_cal(result["target"],result["predicted"]))) ``` `CER 18.36`. ## Evaluation with BERT: ```python import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) import torch import re import sys from transformers import AutoTokenizer, AutoModelForMaskedLM model_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt" device = "cuda" processor_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt" chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\"#$%&()*+,\-.\:;<=>?@\[\]\\\/^_`{|}~]" tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese") lm_model = AutoModelForMaskedLM.from_pretrained("bert-base-chinese").to(device) model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(processor_name) ds = load_dataset("common_voice", 'zh-TW', data_dir="./cv-corpus-6.1-2020-12-11", split="test") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ds = ds.map(map_to_array) def map_to_pred(batch): features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits decoded_results = [] for logit in logits: pred_ids = torch.argmax(logit, dim=-1) mask = ~pred_ids.eq(tokenizer.pad_token_id).unsqueeze(-1).expand(logit.size()) vocab_size = logit.size()[-1] voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1) lm_input = torch.masked_select(pred_ids, ~pred_ids.eq(tokenizer.pad_token_id)).unsqueeze(0) mask_lm_prob = voice_prob.clone() for i in range(lm_input.shape[-1]): masked_lm_input = lm_input.clone() masked_lm_input[0][i] = torch.tensor(tokenizer.mask_token_id).to('cuda') lm_prob = torch.nn.functional.softmax(lm_model(masked_lm_input).logits, dim=-1).squeeze(0) mask_lm_prob[i] = lm_prob[i] comb_pred_ids = torch.argmax(mask_lm_prob*voice_prob, dim=-1) decoded_results.append(processor.decode(comb_pred_ids)) batch["predicted"] = decoded_results batch["target"] = batch["sentence"] return batch result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys())) def cer_cal(groundtruth, hypothesis): err = 0 tot = 0 for p, t in zip(hypothesis, groundtruth): err += float(ed.eval(p.lower(), t.lower())) tot += len(t) return err / tot print("CER: {:2f}".format(100 * cer_cal(result["target"],result["predicted"]))) ``` `CER 25.57`. `TIME: 09:49 min` ## Evaluation with T-TA: setup ``` !git clone https://github.com/voidful/pytorch-tta.git !mv ./pytorch-tta/tta ./tta !wget https://github.com/voidful/pytorch-tta/releases/download/wiki_zh/wiki_zh.pt ``` ```python import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) import torch import re import sys from tta.modeling_tta import TTALMModel from transformers import AutoTokenizer import torch model_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt" device = "cuda" processor_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt" chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\"#$%&()*+,\-.\:;<=>?@\[\]\\\/^_`{|}~]" tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese") lm_model = TTALMModel("bert-base-chinese") tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese") lm_model.load_state_dict(torch.load("./wiki_zh.pt",map_location=torch.device('cuda'))) lm_model.to('cuda') lm_model.eval() model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(processor_name) ds = load_dataset("common_voice", 'zh-TW', data_dir="./cv-corpus-6.1-2020-12-11", split="test") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ds = ds.map(map_to_array) def map_to_pred(batch): features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits decoded_results = [] for logit in logits: pred_ids = torch.argmax(logit, dim=-1) mask = ~pred_ids.eq(tokenizer.pad_token_id).unsqueeze(-1).expand(logit.size()) vocab_size = logit.size()[-1] voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1) lm_input = torch.masked_select(pred_ids, ~pred_ids.eq(tokenizer.pad_token_id)).unsqueeze(0) lm_prob = torch.nn.functional.softmax(lm_model.forward(lm_input)[0], dim=-1).squeeze(0) comb_pred_ids = torch.argmax(lm_prob*voice_prob, dim=-1) decoded_results.append(processor.decode(comb_pred_ids)) batch["predicted"] = decoded_results batch["target"] = batch["sentence"] return batch result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys())) def cer_cal(groundtruth, hypothesis): err = 0 tot = 0 for p, t in zip(hypothesis, groundtruth): err += float(ed.eval(p.lower(), t.lower())) tot += len(t) return err / tot print("CER: {:2f}".format(100 * cer_cal(result["target"],result["predicted"]))) ``` `CER: 25.77`. `TIME: 06:01 min`