import os import gradio as gr import numpy as np from PIL import Image from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.image import img_to_array # Define the paths and filenames model_path = "IYRI1.h5" # Load the model and label encoder model = load_model(model_path) class_names = ["Cat", "Dog"] def predict_input_image(img): img_4d=img.reshape(-1,100,100,3) prediction=model.predict(img_4d)[0] return {class_names[i]: float(prediction[i]) for i in range(2)} image = gr.inputs.Image(shape=(100,100)) label = gr.outputs.Label(num_top_classes=2) iface = gr.Interface(fn=predict_input_image, inputs=image, outputs=label,title="IYRI Classifier 1",interpretation='default').launch(debug='True') # Run the Gradio interface iface.launch()