--- license: bigscience-bloom-rail-1.0 language: - vi - en library_name: transformers pipeline_tag: text-generation tags: - bloom - causal-lm - pytorch model-index: - name: vlsp-2023-vllm/hoa-7b results: - task: name: Word prediction type: text-generation dataset: type: vlsp-2023-vllm/lambada name: ViLambada split: test metrics: - type: Perplexity value: 8.606673731963474 --- # Hoa 7B (Bloom architecture) Hoa is an autoregressive Large Language Model (LLM), based on Bloom's model architecture. Hoa was trained on part of the Common Crawl dataset in Vietnamese and English. Details will be available soon. To contact us, mail to: leanhcuong@gmail.com (Lê Anh Cường) | hieunguyen1053@outlook.com (Hiếu) | nv.cuong@int2.vn (Nguyễn Việt Cường) ### How to use ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("vlsp-2023-vllm/hoa-7b") model = AutoModelForCausalLM.from_pretrained("vlsp-2023-vllm/hoa-7b", low_cpu_mem_usage=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) prompt = "Địa chỉ trường Đại học Tôn Đức Thắng nằm ở số" input_ids = tokenizer(prompt, return_tensors="pt")['input_ids'].to(device) gen_tokens = model.generate(input_ids, max_length=max_length, repetition_penalty=1.1) print(tokenizer.batch_decode(gen_tokens)[0]) ```