--- license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: whisper-medium-konnakol results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: test args: default metrics: - name: Wer type: wer value: 67.08860759493672 --- # whisper-medium-konnakol This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2784 - Wer: 67.0886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 80.0 | 100 | 0.2458 | 56.5401 | | 0.0225 | 160.0 | 200 | 0.2694 | 61.6034 | | 0.0225 | 240.0 | 300 | 0.2743 | 56.9620 | | 0.0 | 320.0 | 400 | 0.2771 | 67.0886 | | 0.0 | 400.0 | 500 | 0.2784 | 67.0886 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1