--- library_name: transformers language: - multilingual license: apache-2.0 base_model: openai/whisper-large-v2 tags: - whisper-event - generated_from_trainer metrics: - wer model-index: - name: Fauna-v0.7 - Rootflo results: [] --- # Fauna-v0.7 - Rootflo This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0558 - Wer: 60.7190 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 72 - eval_batch_size: 96 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 576 - total_eval_batch_size: 384 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0301 | 1.0695 | 500 | 0.0498 | 58.1393 | | 0.0278 | 2.1390 | 1000 | 0.0515 | 58.0461 | | 0.0261 | 3.2086 | 1500 | 0.0538 | 59.1088 | | 0.0241 | 4.2781 | 2000 | 0.0558 | 60.7190 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.3