--- language: - km license: apache-2.0 tags: - automatic-speech-recognition - openslr - robust-speech-event - km - generated_from_trainer model-index: - name: xls-r-300m-km results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: OpenSLR km type: openslr args: km metrics: - name: Test WER type: wer value: 25.70 - name: Test CER type: cer value: 7.03 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: km metrics: - name: Test WER type: wer value: 25.70 - name: Test CER type: cer value: 7.03 --- # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the openslr dataset. It achieves the following results on the evaluation set: - Loss: 0.3281 - Wer: 0.3462 # Evaluation results on OpenSLR "test" (self-split 10%) (Running ./eval.py): - WER: 0.3216977389924633 - CER: 0.08653361193169537 # Evaluation results with language model on OpenSLR "test" (self-split 10%) (Running ./eval.py): - WER: 0.257040856802856 - CER: 0.07025001801282513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.0795 | 5.47 | 400 | 4.4121 | 1.0 | | 3.5658 | 10.95 | 800 | 3.5203 | 1.0 | | 3.3689 | 16.43 | 1200 | 2.8984 | 0.9996 | | 2.01 | 21.91 | 1600 | 1.0041 | 0.7288 | | 1.6783 | 27.39 | 2000 | 0.6941 | 0.5989 | | 1.527 | 32.87 | 2400 | 0.5599 | 0.5282 | | 1.4278 | 38.35 | 2800 | 0.4827 | 0.4806 | | 1.3458 | 43.83 | 3200 | 0.4429 | 0.4532 | | 1.2893 | 49.31 | 3600 | 0.4156 | 0.4330 | | 1.2441 | 54.79 | 4000 | 0.4020 | 0.4040 | | 1.188 | 60.27 | 4400 | 0.3777 | 0.3866 | | 1.1628 | 65.75 | 4800 | 0.3607 | 0.3858 | | 1.1324 | 71.23 | 5200 | 0.3534 | 0.3604 | | 1.0969 | 76.71 | 5600 | 0.3428 | 0.3624 | | 1.0897 | 82.19 | 6000 | 0.3387 | 0.3567 | | 1.0625 | 87.66 | 6400 | 0.3339 | 0.3499 | | 1.0601 | 93.15 | 6800 | 0.3288 | 0.3446 | | 1.0474 | 98.62 | 7200 | 0.3281 | 0.3462 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0