"
+ ]
+ },
+ "execution_count": 113,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import IPython.display as ipd\n",
+ "import numpy as np\n",
+ "import random\n",
+ "\n",
+ "rand_int = random.randint(0, len(common_voice_train)-1)\n",
+ "\n",
+ "print(\"Target text:\", common_voice_train[rand_int][\"sentence\"])\n",
+ "print(\"Input array shape:\", common_voice_train[rand_int][\"audio\"][\"array\"].shape)\n",
+ "print(\"Sampling rate:\", common_voice_train[rand_int][\"audio\"][\"sampling_rate\"])\n",
+ "ipd.Audio(data=common_voice_train[rand_int][\"audio\"][\"array\"], autoplay=False, rate=16000)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 114,
+ "id": "927dbf96",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# This does not prepare the input for the Transformer model.\n",
+ "# This will resample the data and convert the sentence into indices\n",
+ "# Batch here is just for one entry (row)\n",
+ "def prepare_dataset(batch):\n",
+ " audio = batch[\"audio\"]\n",
+ " \n",
+ " # batched output is \"un-batched\"\n",
+ " batch[\"input_values\"] = processor(audio[\"array\"], sampling_rate=audio[\"sampling_rate\"]).input_values[0]\n",
+ " batch[\"input_length\"] = len(batch[\"input_values\"])\n",
+ " \n",
+ " with processor.as_target_processor():\n",
+ " batch[\"labels\"] = processor(batch[\"sentence\"]).input_ids\n",
+ " return batch"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 115,
+ "id": "0b73a58a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "70dca39efd2148eaa755c2f6a14de114",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "0ex [00:00, ?ex/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Loading cached processed dataset at /workspace/.cache/huggingface/datasets/librispeech_asr/clean/2.1.0/8c6e15bda76db687d2a7c7198808151adecbb4d890ff463033a2e6f788c0ba25/cache-440d93538cd91d0a.arrow\n"
+ ]
+ }
+ ],
+ "source": [
+ "common_voice_train = common_voice_train.map(prepare_dataset, remove_columns=common_voice_train.column_names)\n",
+ "common_voice_valid = common_voice_valid.map(prepare_dataset, remove_columns=common_voice_valid.column_names)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 117,
+ "id": "dd807bc7",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "8a32c0e5e4c14038b81e8c1eae653ff8",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/29 [00:00, ?ba/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "c9d8ea1cb9c34928848d41310b1f030b",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/3 [00:00, ?ba/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# In case the dataset is too long which can lead to OOM. We should filter them out.\n",
+ "max_input_length_in_sec = 8.0\n",
+ "common_voice_train = common_voice_train.filter(lambda x: x < max_input_length_in_sec * processor.feature_extractor.sampling_rate, input_columns=[\"input_length\"])\n",
+ "common_voice_valid = common_voice_valid.filter(lambda x: x < max_input_length_in_sec * processor.feature_extractor.sampling_rate, input_columns=[\"input_length\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 118,
+ "id": "59cebe00",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import torch\n",
+ "\n",
+ "from dataclasses import dataclass, field\n",
+ "from typing import Any, Dict, List, Optional, Union\n",
+ "\n",
+ "@dataclass\n",
+ "class DataCollatorCTCWithPadding:\n",
+ " \"\"\"\n",
+ " Data collator that will dynamically pad the inputs received.\n",
+ " Args:\n",
+ " processor (:class:`~transformers.Wav2Vec2Processor`)\n",
+ " The processor used for proccessing the data.\n",
+ " padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):\n",
+ " Select a strategy to pad the returned sequences (according to the model's padding side and padding index)\n",
+ " among:\n",
+ " * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single\n",
+ " sequence if provided).\n",
+ " * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the\n",
+ " maximum acceptable input length for the model if that argument is not provided.\n",
+ " * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of\n",
+ " different lengths).\n",
+ " \"\"\"\n",
+ "\n",
+ " processor: Wav2Vec2Processor\n",
+ " padding: Union[bool, str] = True\n",
+ "\n",
+ " def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:\n",
+ " # split inputs and labels since they have to be of different lenghts and need\n",
+ " # different padding methods\n",
+ " input_features = [{\"input_values\": feature[\"input_values\"]} for feature in features]\n",
+ " label_features = [{\"input_ids\": feature[\"labels\"]} for feature in features]\n",
+ "\n",
+ " batch = self.processor.pad(\n",
+ " input_features,\n",
+ " padding=self.padding,\n",
+ " return_tensors=\"pt\",\n",
+ " )\n",
+ "\n",
+ " with self.processor.as_target_processor():\n",
+ " labels_batch = self.processor.pad(\n",
+ " label_features,\n",
+ " padding=self.padding,\n",
+ " return_tensors=\"pt\",\n",
+ " )\n",
+ "\n",
+ " # replace padding with -100 to ignore loss correctly\n",
+ " labels = labels_batch[\"input_ids\"].masked_fill(labels_batch.attention_mask.ne(1), -100)\n",
+ "\n",
+ " batch[\"labels\"] = labels\n",
+ "\n",
+ " return batch"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 119,
+ "id": "5e435f4d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 120,
+ "id": "94202896",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "wer_metric = load_metric(\"wer\")\n",
+ "# cer_metric = load_metric(\"cer\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 121,
+ "id": "126e6222",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def compute_metrics(pred):\n",
+ " pred_logits = pred.predictions\n",
+ " pred_ids = np.argmax(pred_logits, axis=-1)\n",
+ "\n",
+ " pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id\n",
+ "\n",
+ " pred_str = tokenizer.batch_decode(pred_ids)\n",
+ " label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)\n",
+ " \n",
+ " wer = wer_metric.compute(predictions=pred_str, references=label_str)\n",
+ "# cer = cer_metric.compute(predictions=pred_str, references=label_str)\n",
+ "\n",
+ " return {\"wer\": wer}\n",
+ "# return {\"cer\": cer}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 142,
+ "id": "5797fd64",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "loading configuration file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/config.json from cache at /workspace/.cache/huggingface/transformers/dabc27df63e37bd2a7a221c7774e35f36a280fbdf917cf54cadfc7df8c786f6f.a3e4c3c967d9985881e0ae550a5f6f668f897db5ab2e0802f9b97973b15970e6\n",
+ "Model config Wav2Vec2Config {\n",
+ " \"activation_dropout\": 0.0,\n",
+ " \"adapter_kernel_size\": 3,\n",
+ " \"adapter_stride\": 2,\n",
+ " \"add_adapter\": false,\n",
+ " \"apply_spec_augment\": true,\n",
+ " \"architectures\": [\n",
+ " \"Wav2Vec2ForPreTraining\"\n",
+ " ],\n",
+ " \"attention_dropout\": 0.1,\n",
+ " \"bos_token_id\": 1,\n",
+ " \"classifier_proj_size\": 256,\n",
+ " \"codevector_dim\": 768,\n",
+ " \"contrastive_logits_temperature\": 0.1,\n",
+ " \"conv_bias\": true,\n",
+ " \"conv_dim\": [\n",
+ " 512,\n",
+ " 512,\n",
+ " 512,\n",
+ " 512,\n",
+ " 512,\n",
+ " 512,\n",
+ " 512\n",
+ " ],\n",
+ " \"conv_kernel\": [\n",
+ " 10,\n",
+ " 3,\n",
+ " 3,\n",
+ " 3,\n",
+ " 3,\n",
+ " 2,\n",
+ " 2\n",
+ " ],\n",
+ " \"conv_stride\": [\n",
+ " 5,\n",
+ " 2,\n",
+ " 2,\n",
+ " 2,\n",
+ " 2,\n",
+ " 2,\n",
+ " 2\n",
+ " ],\n",
+ " \"ctc_loss_reduction\": \"mean\",\n",
+ " \"ctc_zero_infinity\": false,\n",
+ " \"diversity_loss_weight\": 0.1,\n",
+ " \"do_stable_layer_norm\": true,\n",
+ " \"eos_token_id\": 2,\n",
+ " \"feat_extract_activation\": \"gelu\",\n",
+ " \"feat_extract_dropout\": 0.0,\n",
+ " \"feat_extract_norm\": \"layer\",\n",
+ " \"feat_proj_dropout\": 0.0,\n",
+ " \"feat_quantizer_dropout\": 0.0,\n",
+ " \"final_dropout\": 0.0,\n",
+ " \"gradient_checkpointing\": false,\n",
+ " \"hidden_act\": \"gelu\",\n",
+ " \"hidden_dropout\": 0.1,\n",
+ " \"hidden_size\": 1024,\n",
+ " \"initializer_range\": 0.02,\n",
+ " \"intermediate_size\": 4096,\n",
+ " \"layer_norm_eps\": 1e-05,\n",
+ " \"layerdrop\": 0.0,\n",
+ " \"mask_feature_length\": 64,\n",
+ " \"mask_feature_min_masks\": 0,\n",
+ " \"mask_feature_prob\": 0.25,\n",
+ " \"mask_time_length\": 10,\n",
+ " \"mask_time_min_masks\": 2,\n",
+ " \"mask_time_prob\": 0.75,\n",
+ " \"model_type\": \"wav2vec2\",\n",
+ " \"num_adapter_layers\": 3,\n",
+ " \"num_attention_heads\": 16,\n",
+ " \"num_codevector_groups\": 2,\n",
+ " \"num_codevectors_per_group\": 320,\n",
+ " \"num_conv_pos_embedding_groups\": 16,\n",
+ " \"num_conv_pos_embeddings\": 128,\n",
+ " \"num_feat_extract_layers\": 7,\n",
+ " \"num_hidden_layers\": 24,\n",
+ " \"num_negatives\": 100,\n",
+ " \"output_hidden_size\": 1024,\n",
+ " \"pad_token_id\": 28,\n",
+ " \"proj_codevector_dim\": 768,\n",
+ " \"tdnn_dilation\": [\n",
+ " 1,\n",
+ " 2,\n",
+ " 3,\n",
+ " 1,\n",
+ " 1\n",
+ " ],\n",
+ " \"tdnn_dim\": [\n",
+ " 512,\n",
+ " 512,\n",
+ " 512,\n",
+ " 512,\n",
+ " 1500\n",
+ " ],\n",
+ " \"tdnn_kernel\": [\n",
+ " 5,\n",
+ " 3,\n",
+ " 3,\n",
+ " 1,\n",
+ " 1\n",
+ " ],\n",
+ " \"torch_dtype\": \"float32\",\n",
+ " \"transformers_version\": \"4.17.0.dev0\",\n",
+ " \"use_weighted_layer_sum\": false,\n",
+ " \"vocab_size\": 31,\n",
+ " \"xvector_output_dim\": 512\n",
+ "}\n",
+ "\n",
+ "loading weights file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/pytorch_model.bin from cache at /workspace/.cache/huggingface/transformers/1e6a6507f3b689035cd4b247e2a37c154e27f39143f31357a49b4e38baeccc36.1edb32803799e27ed554eb7dd935f6745b1a0b17b0ea256442fe24db6eb546cd\n",
+ "Some weights of the model checkpoint at facebook/wav2vec2-xls-r-300m were not used when initializing Wav2Vec2ForCTC: ['quantizer.weight_proj.bias', 'quantizer.codevectors', 'project_hid.weight', 'project_hid.bias', 'project_q.bias', 'quantizer.weight_proj.weight', 'project_q.weight']\n",
+ "- This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
+ "- This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
+ "Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at facebook/wav2vec2-xls-r-300m and are newly initialized: ['lm_head.bias', 'lm_head.weight']\n",
+ "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from transformers import Wav2Vec2ForCTC\n",
+ "\n",
+ "model = Wav2Vec2ForCTC.from_pretrained(\n",
+ " \"facebook/wav2vec2-xls-r-300m\", \n",
+ " attention_dropout=0.1,\n",
+ " layerdrop=0.0,\n",
+ " feat_proj_dropout=0.0,\n",
+ " mask_time_prob=0.75, \n",
+ " mask_time_length=10,\n",
+ " mask_feature_prob=0.25,\n",
+ " mask_feature_length=64,\n",
+ " ctc_loss_reduction=\"mean\",\n",
+ " pad_token_id=processor.tokenizer.pad_token_id,\n",
+ " vocab_size=len(processor.tokenizer)\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 143,
+ "id": "e66e718d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "model.freeze_feature_encoder()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 147,
+ "id": "6cdb6148",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "PyTorch: setting up devices\n",
+ "The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).\n"
+ ]
+ }
+ ],
+ "source": [
+ "from transformers import TrainingArguments\n",
+ "\n",
+ "training_args = TrainingArguments(\n",
+ " output_dir='.',\n",
+ " group_by_length=True,\n",
+ " per_device_train_batch_size=8,\n",
+ " gradient_accumulation_steps=4,\n",
+ " evaluation_strategy=\"steps\",\n",
+ " gradient_checkpointing=True,\n",
+ " fp16=True,\n",
+ " num_train_epochs=50,\n",
+ " save_steps=500,\n",
+ " eval_steps=500,\n",
+ " logging_steps=100,\n",
+ " learning_rate=5e-5,\n",
+ " warmup_steps=1000,\n",
+ " save_total_limit=3,\n",
+ " load_best_model_at_end=True\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 148,
+ "id": "f396bd8f",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Using amp half precision backend\n"
+ ]
+ }
+ ],
+ "source": [
+ "from transformers import Trainer\n",
+ "\n",
+ "trainer = Trainer(\n",
+ " model=model,\n",
+ " data_collator=data_collator,\n",
+ " args=training_args,\n",
+ " compute_metrics=compute_metrics,\n",
+ " train_dataset=common_voice_train,\n",
+ " eval_dataset=common_voice_valid,\n",
+ " tokenizer=processor.feature_extractor,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 149,
+ "id": "50550e52",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "The following columns in the training set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "/opt/conda/lib/python3.8/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use thePyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
+ " warnings.warn(\n",
+ "***** Running training *****\n",
+ " Num examples = 3857\n",
+ " Num Epochs = 50\n",
+ " Instantaneous batch size per device = 8\n",
+ " Total train batch size (w. parallel, distributed & accumulation) = 32\n",
+ " Gradient Accumulation steps = 4\n",
+ " Total optimization steps = 6000\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " \n",
+ "
\n",
+ " [6000/6000 3:56:13, Epoch 49/50]\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Step | \n",
+ " Training Loss | \n",
+ " Validation Loss | \n",
+ " Wer | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 500 | \n",
+ " 2.936500 | \n",
+ " 2.939795 | \n",
+ " 0.999872 | \n",
+ "
\n",
+ " \n",
+ " 1000 | \n",
+ " 1.544400 | \n",
+ " 0.594715 | \n",
+ " 0.428913 | \n",
+ "
\n",
+ " \n",
+ " 1500 | \n",
+ " 1.136700 | \n",
+ " 0.275093 | \n",
+ " 0.236642 | \n",
+ "
\n",
+ " \n",
+ " 2000 | \n",
+ " 0.997200 | \n",
+ " 0.203234 | \n",
+ " 0.179661 | \n",
+ "
\n",
+ " \n",
+ " 2500 | \n",
+ " 0.911800 | \n",
+ " 0.178594 | \n",
+ " 0.147944 | \n",
+ "
\n",
+ " \n",
+ " 3000 | \n",
+ " 0.866400 | \n",
+ " 0.164096 | \n",
+ " 0.140763 | \n",
+ "
\n",
+ " \n",
+ " 3500 | \n",
+ " 0.825100 | \n",
+ " 0.153681 | \n",
+ " 0.126742 | \n",
+ "
\n",
+ " \n",
+ " 4000 | \n",
+ " 0.793000 | \n",
+ " 0.152465 | \n",
+ " 0.124434 | \n",
+ "
\n",
+ " \n",
+ " 4500 | \n",
+ " 0.785000 | \n",
+ " 0.146975 | \n",
+ " 0.118449 | \n",
+ "
\n",
+ " \n",
+ " 5000 | \n",
+ " 0.761200 | \n",
+ " 0.144602 | \n",
+ " 0.117722 | \n",
+ "
\n",
+ " \n",
+ " 5500 | \n",
+ " 0.747800 | \n",
+ " 0.144903 | \n",
+ " 0.117594 | \n",
+ "
\n",
+ " \n",
+ " 6000 | \n",
+ " 0.744300 | \n",
+ " 0.144408 | \n",
+ " 0.116697 | \n",
+ "
\n",
+ " \n",
+ "
"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 1812\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to ./checkpoint-500\n",
+ "Configuration saved in ./checkpoint-500/config.json\n",
+ "Model weights saved in ./checkpoint-500/pytorch_model.bin\n",
+ "Configuration saved in ./checkpoint-500/preprocessor_config.json\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 1812\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to ./checkpoint-1000\n",
+ "Configuration saved in ./checkpoint-1000/config.json\n",
+ "Model weights saved in ./checkpoint-1000/pytorch_model.bin\n",
+ "Configuration saved in ./checkpoint-1000/preprocessor_config.json\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 1812\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to ./checkpoint-1500\n",
+ "Configuration saved in ./checkpoint-1500/config.json\n",
+ "Model weights saved in ./checkpoint-1500/pytorch_model.bin\n",
+ "Configuration saved in ./checkpoint-1500/preprocessor_config.json\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 1812\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to ./checkpoint-2000\n",
+ "Configuration saved in ./checkpoint-2000/config.json\n",
+ "Model weights saved in ./checkpoint-2000/pytorch_model.bin\n",
+ "Configuration saved in ./checkpoint-2000/preprocessor_config.json\n",
+ "Deleting older checkpoint [checkpoint-500] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 1812\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to ./checkpoint-2500\n",
+ "Configuration saved in ./checkpoint-2500/config.json\n",
+ "Model weights saved in ./checkpoint-2500/pytorch_model.bin\n",
+ "Configuration saved in ./checkpoint-2500/preprocessor_config.json\n",
+ "Deleting older checkpoint [checkpoint-1000] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 1812\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to ./checkpoint-3000\n",
+ "Configuration saved in ./checkpoint-3000/config.json\n",
+ "Model weights saved in ./checkpoint-3000/pytorch_model.bin\n",
+ "Configuration saved in ./checkpoint-3000/preprocessor_config.json\n",
+ "Deleting older checkpoint [checkpoint-1500] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 1812\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to ./checkpoint-3500\n",
+ "Configuration saved in ./checkpoint-3500/config.json\n",
+ "Model weights saved in ./checkpoint-3500/pytorch_model.bin\n",
+ "Configuration saved in ./checkpoint-3500/preprocessor_config.json\n",
+ "Deleting older checkpoint [checkpoint-2000] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 1812\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to ./checkpoint-4000\n",
+ "Configuration saved in ./checkpoint-4000/config.json\n",
+ "Model weights saved in ./checkpoint-4000/pytorch_model.bin\n",
+ "Configuration saved in ./checkpoint-4000/preprocessor_config.json\n",
+ "Deleting older checkpoint [checkpoint-2500] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 1812\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to ./checkpoint-4500\n",
+ "Configuration saved in ./checkpoint-4500/config.json\n",
+ "Model weights saved in ./checkpoint-4500/pytorch_model.bin\n",
+ "Configuration saved in ./checkpoint-4500/preprocessor_config.json\n",
+ "Deleting older checkpoint [checkpoint-3000] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 1812\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to ./checkpoint-5000\n",
+ "Configuration saved in ./checkpoint-5000/config.json\n",
+ "Model weights saved in ./checkpoint-5000/pytorch_model.bin\n",
+ "Configuration saved in ./checkpoint-5000/preprocessor_config.json\n",
+ "Deleting older checkpoint [checkpoint-3500] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 1812\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to ./checkpoint-5500\n",
+ "Configuration saved in ./checkpoint-5500/config.json\n",
+ "Model weights saved in ./checkpoint-5500/pytorch_model.bin\n",
+ "Configuration saved in ./checkpoint-5500/preprocessor_config.json\n",
+ "Deleting older checkpoint [checkpoint-4000] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 1812\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to ./checkpoint-6000\n",
+ "Configuration saved in ./checkpoint-6000/config.json\n",
+ "Model weights saved in ./checkpoint-6000/pytorch_model.bin\n",
+ "Configuration saved in ./checkpoint-6000/preprocessor_config.json\n",
+ "Deleting older checkpoint [checkpoint-4500] due to args.save_total_limit\n",
+ "\n",
+ "\n",
+ "Training completed. Do not forget to share your model on huggingface.co/models =)\n",
+ "\n",
+ "\n",
+ "Loading best model from ./checkpoint-6000 (score: 0.14440837502479553).\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "TrainOutput(global_step=6000, training_loss=1.1765391832987468, metrics={'train_runtime': 14177.2496, 'train_samples_per_second': 13.603, 'train_steps_per_second': 0.423, 'total_flos': 2.9510893171822916e+19, 'train_loss': 1.1765391832987468, 'epoch': 49.99})"
+ ]
+ },
+ "execution_count": 149,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "trainer.train()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 150,
+ "id": "57f2a4e2",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "tokenizer config file saved in ./tokenizer_config.json\n",
+ "Special tokens file saved in ./special_tokens_map.json\n",
+ "added tokens file saved in ./added_tokens.json\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "('./tokenizer_config.json',\n",
+ " './special_tokens_map.json',\n",
+ " './vocab.json',\n",
+ " './added_tokens.json')"
+ ]
+ },
+ "execution_count": 150,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "tokenizer.save_pretrained('.')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 151,
+ "id": "5d14e7f1",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Configuration saved in ./preprocessor_config.json\n",
+ "tokenizer config file saved in ./tokenizer_config.json\n",
+ "Special tokens file saved in ./special_tokens_map.json\n",
+ "added tokens file saved in ./added_tokens.json\n"
+ ]
+ }
+ ],
+ "source": [
+ "processor.save_pretrained('.')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 152,
+ "id": "97ab4059",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "kwargs = {\n",
+ " \"finetuned_from\": \"facebook/wav2vec2-xls-r-300m\",\n",
+ " \"tasks\": \"speech-recognition\",\n",
+ " \"tags\": [\"automatic-speech-recognition\", \"librispeech_asr\", \"robust-speech-event\", \"en\"],\n",
+ " \"dataset_args\": f\"Config: clean, Training split: train.100, Eval split: validation\",\n",
+ " \"dataset\": \"librispeech_asr\",\n",
+ " \"language\": \"en\"\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 153,
+ "id": "62fc6680",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Dropping the following result as it does not have all the necessary fields:\n",
+ "{}\n"
+ ]
+ }
+ ],
+ "source": [
+ "trainer.create_model_card(**kwargs)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 154,
+ "id": "ba5d5f5d",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Saving model checkpoint to .\n",
+ "Configuration saved in ./config.json\n",
+ "Model weights saved in ./pytorch_model.bin\n",
+ "Configuration saved in ./preprocessor_config.json\n"
+ ]
+ }
+ ],
+ "source": [
+ "trainer.save_model('.')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "7618702f",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c8b7927f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "tokenizer.push_to_hub('.')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "id": "341a70d4",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Configuration saved in vitouphy/xls-r-300m-ja/config.json\n",
+ "Model weights saved in vitouphy/xls-r-300m-ja/pytorch_model.bin\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "6e6bb4dfb7ea43818e83f52252cf939b",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Upload file pytorch_model.bin: 0%| | 3.39k/1.18G [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "To https://huggingface.co/vitouphy/xls-r-300m-ja\n",
+ " b5d6daa..1e678ca main -> main\n",
+ "\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "'https://huggingface.co/vitouphy/xls-r-300m-ja/commit/1e678ca0c4b03aa3bca71af6fd2c0aa738b7aa7b'"
+ ]
+ },
+ "execution_count": 61,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "model.push_to_hub('vitouphy/xls-r-300m-ja')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 62,
+ "id": "f4b4919d",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "1"
+ ]
+ },
+ "execution_count": 62,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "id": "f0d11e5d",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Saving model checkpoint to .\n",
+ "Configuration saved in ./config.json\n",
+ "Model weights saved in ./pytorch_model.bin\n",
+ "Configuration saved in ./preprocessor_config.json\n"
+ ]
+ },
+ {
+ "ename": "AttributeError",
+ "evalue": "'Trainer' object has no attribute 'repo'",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
+ "Input \u001b[0;32mIn [57]\u001b[0m, in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpush_to_hub\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mvitouphy/xls-r-300m-ja\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n",
+ "File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/transformers/trainer.py:2792\u001b[0m, in \u001b[0;36mTrainer.push_to_hub\u001b[0;34m(self, commit_message, blocking, **kwargs)\u001b[0m\n\u001b[1;32m 2789\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mis_world_process_zero():\n\u001b[1;32m 2790\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m\n\u001b[0;32m-> 2792\u001b[0m git_head_commit_url \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrepo\u001b[49m\u001b[38;5;241m.\u001b[39mpush_to_hub(\n\u001b[1;32m 2793\u001b[0m commit_message\u001b[38;5;241m=\u001b[39mcommit_message, blocking\u001b[38;5;241m=\u001b[39mblocking, auto_lfs_prune\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 2794\u001b[0m )\n\u001b[1;32m 2795\u001b[0m \u001b[38;5;66;03m# push separately the model card to be independant from the rest of the model\u001b[39;00m\n\u001b[1;32m 2796\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs\u001b[38;5;241m.\u001b[39mshould_save:\n",
+ "\u001b[0;31mAttributeError\u001b[0m: 'Trainer' object has no attribute 'repo'"
+ ]
+ }
+ ],
+ "source": [
+ "trainer.push_to_hub('vitouphy/xls-r-300m-ja')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "9256963c",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}