vishalkatheriya18 commited on
Commit
9711163
1 Parent(s): 818433f

End of training

Browse files
README.md ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/convnextv2-tiny-1k-224
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: convnextv2-tiny-1k-224-finetuned-eurosat
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.625
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # convnextv2-tiny-1k-224-finetuned-eurosat
32
+
33
+ This model is a fine-tuned version of [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 1.2021
36
+ - Accuracy: 0.625
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 32
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 128
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 130
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|
70
+ | No log | 1.0 | 1 | 2.0300 | 0.0 |
71
+ | No log | 2.0 | 3 | 2.0208 | 0.0 |
72
+ | No log | 3.0 | 5 | 1.9970 | 0.0 |
73
+ | No log | 4.0 | 6 | 1.9853 | 0.125 |
74
+ | No log | 5.0 | 7 | 1.9666 | 0.125 |
75
+ | No log | 6.0 | 9 | 1.9215 | 0.25 |
76
+ | 1.024 | 7.0 | 11 | 1.8757 | 0.125 |
77
+ | 1.024 | 8.0 | 12 | 1.8580 | 0.125 |
78
+ | 1.024 | 9.0 | 13 | 1.8413 | 0.125 |
79
+ | 1.024 | 10.0 | 15 | 1.7954 | 0.375 |
80
+ | 1.024 | 11.0 | 17 | 1.7510 | 0.5 |
81
+ | 1.024 | 12.0 | 18 | 1.7309 | 0.625 |
82
+ | 1.024 | 13.0 | 19 | 1.7132 | 0.625 |
83
+ | 0.8487 | 14.0 | 21 | 1.6768 | 0.625 |
84
+ | 0.8487 | 15.0 | 23 | 1.6402 | 0.625 |
85
+ | 0.8487 | 16.0 | 24 | 1.6197 | 0.625 |
86
+ | 0.8487 | 17.0 | 25 | 1.5952 | 0.625 |
87
+ | 0.8487 | 18.0 | 27 | 1.5259 | 0.625 |
88
+ | 0.8487 | 19.0 | 29 | 1.4599 | 0.625 |
89
+ | 0.6549 | 20.0 | 30 | 1.4526 | 0.625 |
90
+ | 0.6549 | 21.0 | 31 | 1.4459 | 0.625 |
91
+ | 0.6549 | 22.0 | 33 | 1.4222 | 0.625 |
92
+ | 0.6549 | 23.0 | 35 | 1.4136 | 0.625 |
93
+ | 0.6549 | 24.0 | 36 | 1.4238 | 0.625 |
94
+ | 0.6549 | 25.0 | 37 | 1.4286 | 0.625 |
95
+ | 0.6549 | 26.0 | 39 | 1.4231 | 0.625 |
96
+ | 0.479 | 27.0 | 41 | 1.3964 | 0.625 |
97
+ | 0.479 | 28.0 | 42 | 1.3757 | 0.625 |
98
+ | 0.479 | 29.0 | 43 | 1.3501 | 0.625 |
99
+ | 0.479 | 30.0 | 45 | 1.2779 | 0.625 |
100
+ | 0.479 | 31.0 | 47 | 1.2360 | 0.625 |
101
+ | 0.479 | 32.0 | 48 | 1.2185 | 0.625 |
102
+ | 0.479 | 33.0 | 49 | 1.1920 | 0.625 |
103
+ | 0.3504 | 34.0 | 51 | 1.1326 | 0.625 |
104
+ | 0.3504 | 35.0 | 53 | 1.1018 | 0.625 |
105
+ | 0.3504 | 36.0 | 54 | 1.0970 | 0.625 |
106
+ | 0.3504 | 37.0 | 55 | 1.1030 | 0.625 |
107
+ | 0.3504 | 38.0 | 57 | 1.1378 | 0.625 |
108
+ | 0.3504 | 39.0 | 59 | 1.1720 | 0.625 |
109
+ | 0.2864 | 40.0 | 60 | 1.1867 | 0.625 |
110
+ | 0.2864 | 41.0 | 61 | 1.1960 | 0.625 |
111
+ | 0.2864 | 42.0 | 63 | 1.1959 | 0.625 |
112
+ | 0.2864 | 43.0 | 65 | 1.1727 | 0.625 |
113
+ | 0.2864 | 44.0 | 66 | 1.1653 | 0.625 |
114
+ | 0.2864 | 45.0 | 67 | 1.1644 | 0.625 |
115
+ | 0.2864 | 46.0 | 69 | 1.1809 | 0.625 |
116
+ | 0.2357 | 47.0 | 71 | 1.1902 | 0.625 |
117
+ | 0.2357 | 48.0 | 72 | 1.1872 | 0.625 |
118
+ | 0.2357 | 49.0 | 73 | 1.1894 | 0.625 |
119
+ | 0.2357 | 50.0 | 75 | 1.1982 | 0.625 |
120
+ | 0.2357 | 51.0 | 77 | 1.2418 | 0.625 |
121
+ | 0.2357 | 52.0 | 78 | 1.2575 | 0.625 |
122
+ | 0.2357 | 53.0 | 79 | 1.2708 | 0.625 |
123
+ | 0.1561 | 54.0 | 81 | 1.2666 | 0.625 |
124
+ | 0.1561 | 55.0 | 83 | 1.2241 | 0.625 |
125
+ | 0.1561 | 56.0 | 84 | 1.2089 | 0.625 |
126
+ | 0.1561 | 57.0 | 85 | 1.1914 | 0.625 |
127
+ | 0.1561 | 58.0 | 87 | 1.1559 | 0.625 |
128
+ | 0.1561 | 59.0 | 89 | 1.1387 | 0.625 |
129
+ | 0.1453 | 60.0 | 90 | 1.1337 | 0.625 |
130
+ | 0.1453 | 61.0 | 91 | 1.1290 | 0.625 |
131
+ | 0.1453 | 62.0 | 93 | 1.1369 | 0.625 |
132
+ | 0.1453 | 63.0 | 95 | 1.1439 | 0.625 |
133
+ | 0.1453 | 64.0 | 96 | 1.1448 | 0.625 |
134
+ | 0.1453 | 65.0 | 97 | 1.1530 | 0.625 |
135
+ | 0.1453 | 66.0 | 99 | 1.1718 | 0.625 |
136
+ | 0.1271 | 67.0 | 101 | 1.1965 | 0.625 |
137
+ | 0.1271 | 68.0 | 102 | 1.2092 | 0.625 |
138
+ | 0.1271 | 69.0 | 103 | 1.2176 | 0.625 |
139
+ | 0.1271 | 70.0 | 105 | 1.2337 | 0.625 |
140
+ | 0.1271 | 71.0 | 107 | 1.2376 | 0.625 |
141
+ | 0.1271 | 72.0 | 108 | 1.2384 | 0.625 |
142
+ | 0.1271 | 73.0 | 109 | 1.2378 | 0.625 |
143
+ | 0.1153 | 74.0 | 111 | 1.2385 | 0.625 |
144
+ | 0.1153 | 75.0 | 113 | 1.2316 | 0.625 |
145
+ | 0.1153 | 76.0 | 114 | 1.2274 | 0.625 |
146
+ | 0.1153 | 77.0 | 115 | 1.2252 | 0.625 |
147
+ | 0.1153 | 78.0 | 117 | 1.2196 | 0.625 |
148
+ | 0.1153 | 79.0 | 119 | 1.2145 | 0.625 |
149
+ | 0.0882 | 80.0 | 120 | 1.2130 | 0.625 |
150
+ | 0.0882 | 81.0 | 121 | 1.2117 | 0.625 |
151
+ | 0.0882 | 82.0 | 123 | 1.2097 | 0.625 |
152
+ | 0.0882 | 83.0 | 125 | 1.2075 | 0.625 |
153
+ | 0.0882 | 84.0 | 126 | 1.2054 | 0.625 |
154
+ | 0.0882 | 85.0 | 127 | 1.2039 | 0.625 |
155
+ | 0.0882 | 86.0 | 129 | 1.2025 | 0.625 |
156
+ | 0.0987 | 86.6667 | 130 | 1.2021 | 0.625 |
157
+
158
+
159
+ ### Framework versions
160
+
161
+ - Transformers 4.44.0
162
+ - Pytorch 2.4.0
163
+ - Datasets 2.21.0
164
+ - Tokenizers 0.19.1
all_results.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 86.66666666666667,
3
+ "eval_accuracy": 0.625,
4
+ "eval_loss": 1.2021381855010986,
5
+ "eval_runtime": 0.2304,
6
+ "eval_samples_per_second": 34.717,
7
+ "eval_steps_per_second": 4.34,
8
+ "total_flos": 1.574865655328932e+17,
9
+ "train_loss": 0.3546037518061124,
10
+ "train_runtime": 225.362,
11
+ "train_samples_per_second": 41.533,
12
+ "train_steps_per_second": 0.577
13
+ }
config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/convnextv2-tiny-1k-224",
3
+ "architectures": [
4
+ "ConvNextV2ForImageClassification"
5
+ ],
6
+ "depths": [
7
+ 3,
8
+ 3,
9
+ 9,
10
+ 3
11
+ ],
12
+ "drop_path_rate": 0.0,
13
+ "hidden_act": "gelu",
14
+ "hidden_sizes": [
15
+ 96,
16
+ 192,
17
+ 384,
18
+ 768
19
+ ],
20
+ "id2label": {
21
+ "0": "Joggers",
22
+ "1": "capri",
23
+ "2": "jeans",
24
+ "3": "legging",
25
+ "4": "plazzo",
26
+ "5": "shorts",
27
+ "6": "skirt",
28
+ "7": "trouser"
29
+ },
30
+ "image_size": 224,
31
+ "initializer_range": 0.02,
32
+ "label2id": {
33
+ "Joggers": 0,
34
+ "capri": 1,
35
+ "jeans": 2,
36
+ "legging": 3,
37
+ "plazzo": 4,
38
+ "shorts": 5,
39
+ "skirt": 6,
40
+ "trouser": 7
41
+ },
42
+ "layer_norm_eps": 1e-12,
43
+ "model_type": "convnextv2",
44
+ "num_channels": 3,
45
+ "num_stages": 4,
46
+ "out_features": [
47
+ "stage4"
48
+ ],
49
+ "out_indices": [
50
+ 4
51
+ ],
52
+ "patch_size": 4,
53
+ "problem_type": "single_label_classification",
54
+ "stage_names": [
55
+ "stem",
56
+ "stage1",
57
+ "stage2",
58
+ "stage3",
59
+ "stage4"
60
+ ],
61
+ "torch_dtype": "float32",
62
+ "transformers_version": "4.44.0"
63
+ }
eval_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 86.66666666666667,
3
+ "eval_accuracy": 0.625,
4
+ "eval_loss": 1.2021381855010986,
5
+ "eval_runtime": 0.2304,
6
+ "eval_samples_per_second": 34.717,
7
+ "eval_steps_per_second": 4.34
8
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76e72daa47f949e84cf8be0ea3c00e00e92ed8369d17437418d3c618795149c2
3
+ size 111514288
preprocessor_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_pct": 0.875,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.485,
8
+ 0.456,
9
+ 0.406
10
+ ],
11
+ "image_processor_type": "ConvNextImageProcessor",
12
+ "image_std": [
13
+ 0.229,
14
+ 0.224,
15
+ 0.225
16
+ ],
17
+ "resample": 3,
18
+ "rescale_factor": 0.00392156862745098,
19
+ "size": {
20
+ "shortest_edge": 224
21
+ }
22
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 86.66666666666667,
3
+ "total_flos": 1.574865655328932e+17,
4
+ "train_loss": 0.3546037518061124,
5
+ "train_runtime": 225.362,
6
+ "train_samples_per_second": 41.533,
7
+ "train_steps_per_second": 0.577
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,916 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 86.66666666666667,
5
+ "eval_steps": 500,
6
+ "global_step": 130,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "eval_accuracy": 0.0,
14
+ "eval_loss": 2.030040740966797,
15
+ "eval_runtime": 0.2932,
16
+ "eval_samples_per_second": 27.282,
17
+ "eval_steps_per_second": 3.41,
18
+ "step": 1
19
+ },
20
+ {
21
+ "epoch": 2.0,
22
+ "eval_accuracy": 0.0,
23
+ "eval_loss": 2.020792007446289,
24
+ "eval_runtime": 0.2487,
25
+ "eval_samples_per_second": 32.169,
26
+ "eval_steps_per_second": 4.021,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 3.0,
31
+ "eval_accuracy": 0.0,
32
+ "eval_loss": 1.996970534324646,
33
+ "eval_runtime": 0.2271,
34
+ "eval_samples_per_second": 35.23,
35
+ "eval_steps_per_second": 4.404,
36
+ "step": 5
37
+ },
38
+ {
39
+ "epoch": 4.0,
40
+ "eval_accuracy": 0.125,
41
+ "eval_loss": 1.9852917194366455,
42
+ "eval_runtime": 0.2294,
43
+ "eval_samples_per_second": 34.875,
44
+ "eval_steps_per_second": 4.359,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 5.0,
49
+ "eval_accuracy": 0.125,
50
+ "eval_loss": 1.9666370153427124,
51
+ "eval_runtime": 0.23,
52
+ "eval_samples_per_second": 34.788,
53
+ "eval_steps_per_second": 4.348,
54
+ "step": 7
55
+ },
56
+ {
57
+ "epoch": 6.0,
58
+ "eval_accuracy": 0.25,
59
+ "eval_loss": 1.9215028285980225,
60
+ "eval_runtime": 0.2245,
61
+ "eval_samples_per_second": 35.632,
62
+ "eval_steps_per_second": 4.454,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 6.666666666666667,
67
+ "grad_norm": 14.784972190856934,
68
+ "learning_rate": 3.846153846153846e-05,
69
+ "loss": 1.024,
70
+ "step": 10
71
+ },
72
+ {
73
+ "epoch": 7.0,
74
+ "eval_accuracy": 0.125,
75
+ "eval_loss": 1.8757238388061523,
76
+ "eval_runtime": 0.2259,
77
+ "eval_samples_per_second": 35.411,
78
+ "eval_steps_per_second": 4.426,
79
+ "step": 11
80
+ },
81
+ {
82
+ "epoch": 8.0,
83
+ "eval_accuracy": 0.125,
84
+ "eval_loss": 1.8579578399658203,
85
+ "eval_runtime": 0.2276,
86
+ "eval_samples_per_second": 35.149,
87
+ "eval_steps_per_second": 4.394,
88
+ "step": 12
89
+ },
90
+ {
91
+ "epoch": 9.0,
92
+ "eval_accuracy": 0.125,
93
+ "eval_loss": 1.8413233757019043,
94
+ "eval_runtime": 0.232,
95
+ "eval_samples_per_second": 34.49,
96
+ "eval_steps_per_second": 4.311,
97
+ "step": 13
98
+ },
99
+ {
100
+ "epoch": 10.0,
101
+ "eval_accuracy": 0.375,
102
+ "eval_loss": 1.7954258918762207,
103
+ "eval_runtime": 0.2267,
104
+ "eval_samples_per_second": 35.29,
105
+ "eval_steps_per_second": 4.411,
106
+ "step": 15
107
+ },
108
+ {
109
+ "epoch": 11.0,
110
+ "eval_accuracy": 0.5,
111
+ "eval_loss": 1.7509543895721436,
112
+ "eval_runtime": 0.2337,
113
+ "eval_samples_per_second": 34.23,
114
+ "eval_steps_per_second": 4.279,
115
+ "step": 17
116
+ },
117
+ {
118
+ "epoch": 12.0,
119
+ "eval_accuracy": 0.625,
120
+ "eval_loss": 1.7309346199035645,
121
+ "eval_runtime": 0.2261,
122
+ "eval_samples_per_second": 35.381,
123
+ "eval_steps_per_second": 4.423,
124
+ "step": 18
125
+ },
126
+ {
127
+ "epoch": 13.0,
128
+ "eval_accuracy": 0.625,
129
+ "eval_loss": 1.7131527662277222,
130
+ "eval_runtime": 0.2297,
131
+ "eval_samples_per_second": 34.829,
132
+ "eval_steps_per_second": 4.354,
133
+ "step": 19
134
+ },
135
+ {
136
+ "epoch": 13.333333333333334,
137
+ "grad_norm": 9.231935501098633,
138
+ "learning_rate": 4.700854700854701e-05,
139
+ "loss": 0.8487,
140
+ "step": 20
141
+ },
142
+ {
143
+ "epoch": 14.0,
144
+ "eval_accuracy": 0.625,
145
+ "eval_loss": 1.6768202781677246,
146
+ "eval_runtime": 0.2263,
147
+ "eval_samples_per_second": 35.354,
148
+ "eval_steps_per_second": 4.419,
149
+ "step": 21
150
+ },
151
+ {
152
+ "epoch": 15.0,
153
+ "eval_accuracy": 0.625,
154
+ "eval_loss": 1.64021635055542,
155
+ "eval_runtime": 0.2376,
156
+ "eval_samples_per_second": 33.673,
157
+ "eval_steps_per_second": 4.209,
158
+ "step": 23
159
+ },
160
+ {
161
+ "epoch": 16.0,
162
+ "eval_accuracy": 0.625,
163
+ "eval_loss": 1.6197324991226196,
164
+ "eval_runtime": 0.2274,
165
+ "eval_samples_per_second": 35.183,
166
+ "eval_steps_per_second": 4.398,
167
+ "step": 24
168
+ },
169
+ {
170
+ "epoch": 17.0,
171
+ "eval_accuracy": 0.625,
172
+ "eval_loss": 1.5951614379882812,
173
+ "eval_runtime": 0.2246,
174
+ "eval_samples_per_second": 35.616,
175
+ "eval_steps_per_second": 4.452,
176
+ "step": 25
177
+ },
178
+ {
179
+ "epoch": 18.0,
180
+ "eval_accuracy": 0.625,
181
+ "eval_loss": 1.525948166847229,
182
+ "eval_runtime": 0.229,
183
+ "eval_samples_per_second": 34.929,
184
+ "eval_steps_per_second": 4.366,
185
+ "step": 27
186
+ },
187
+ {
188
+ "epoch": 19.0,
189
+ "eval_accuracy": 0.625,
190
+ "eval_loss": 1.4598863124847412,
191
+ "eval_runtime": 0.228,
192
+ "eval_samples_per_second": 35.095,
193
+ "eval_steps_per_second": 4.387,
194
+ "step": 29
195
+ },
196
+ {
197
+ "epoch": 20.0,
198
+ "grad_norm": 15.795075416564941,
199
+ "learning_rate": 4.2735042735042735e-05,
200
+ "loss": 0.6549,
201
+ "step": 30
202
+ },
203
+ {
204
+ "epoch": 20.0,
205
+ "eval_accuracy": 0.625,
206
+ "eval_loss": 1.4526441097259521,
207
+ "eval_runtime": 0.2272,
208
+ "eval_samples_per_second": 35.213,
209
+ "eval_steps_per_second": 4.402,
210
+ "step": 30
211
+ },
212
+ {
213
+ "epoch": 21.0,
214
+ "eval_accuracy": 0.625,
215
+ "eval_loss": 1.4458982944488525,
216
+ "eval_runtime": 0.227,
217
+ "eval_samples_per_second": 35.238,
218
+ "eval_steps_per_second": 4.405,
219
+ "step": 31
220
+ },
221
+ {
222
+ "epoch": 22.0,
223
+ "eval_accuracy": 0.625,
224
+ "eval_loss": 1.4222255945205688,
225
+ "eval_runtime": 0.2296,
226
+ "eval_samples_per_second": 34.847,
227
+ "eval_steps_per_second": 4.356,
228
+ "step": 33
229
+ },
230
+ {
231
+ "epoch": 23.0,
232
+ "eval_accuracy": 0.625,
233
+ "eval_loss": 1.4135932922363281,
234
+ "eval_runtime": 0.23,
235
+ "eval_samples_per_second": 34.776,
236
+ "eval_steps_per_second": 4.347,
237
+ "step": 35
238
+ },
239
+ {
240
+ "epoch": 24.0,
241
+ "eval_accuracy": 0.625,
242
+ "eval_loss": 1.4238104820251465,
243
+ "eval_runtime": 0.2362,
244
+ "eval_samples_per_second": 33.867,
245
+ "eval_steps_per_second": 4.233,
246
+ "step": 36
247
+ },
248
+ {
249
+ "epoch": 25.0,
250
+ "eval_accuracy": 0.625,
251
+ "eval_loss": 1.4286460876464844,
252
+ "eval_runtime": 0.2278,
253
+ "eval_samples_per_second": 35.125,
254
+ "eval_steps_per_second": 4.391,
255
+ "step": 37
256
+ },
257
+ {
258
+ "epoch": 26.0,
259
+ "eval_accuracy": 0.625,
260
+ "eval_loss": 1.42312753200531,
261
+ "eval_runtime": 0.2304,
262
+ "eval_samples_per_second": 34.725,
263
+ "eval_steps_per_second": 4.341,
264
+ "step": 39
265
+ },
266
+ {
267
+ "epoch": 26.666666666666668,
268
+ "grad_norm": 7.896138668060303,
269
+ "learning_rate": 3.846153846153846e-05,
270
+ "loss": 0.479,
271
+ "step": 40
272
+ },
273
+ {
274
+ "epoch": 27.0,
275
+ "eval_accuracy": 0.625,
276
+ "eval_loss": 1.3963532447814941,
277
+ "eval_runtime": 0.225,
278
+ "eval_samples_per_second": 35.554,
279
+ "eval_steps_per_second": 4.444,
280
+ "step": 41
281
+ },
282
+ {
283
+ "epoch": 28.0,
284
+ "eval_accuracy": 0.625,
285
+ "eval_loss": 1.375662088394165,
286
+ "eval_runtime": 0.2285,
287
+ "eval_samples_per_second": 35.009,
288
+ "eval_steps_per_second": 4.376,
289
+ "step": 42
290
+ },
291
+ {
292
+ "epoch": 29.0,
293
+ "eval_accuracy": 0.625,
294
+ "eval_loss": 1.350050687789917,
295
+ "eval_runtime": 0.2264,
296
+ "eval_samples_per_second": 35.335,
297
+ "eval_steps_per_second": 4.417,
298
+ "step": 43
299
+ },
300
+ {
301
+ "epoch": 30.0,
302
+ "eval_accuracy": 0.625,
303
+ "eval_loss": 1.277871012687683,
304
+ "eval_runtime": 0.2258,
305
+ "eval_samples_per_second": 35.433,
306
+ "eval_steps_per_second": 4.429,
307
+ "step": 45
308
+ },
309
+ {
310
+ "epoch": 31.0,
311
+ "eval_accuracy": 0.625,
312
+ "eval_loss": 1.2359542846679688,
313
+ "eval_runtime": 0.2324,
314
+ "eval_samples_per_second": 34.427,
315
+ "eval_steps_per_second": 4.303,
316
+ "step": 47
317
+ },
318
+ {
319
+ "epoch": 32.0,
320
+ "eval_accuracy": 0.625,
321
+ "eval_loss": 1.218457579612732,
322
+ "eval_runtime": 0.2295,
323
+ "eval_samples_per_second": 34.863,
324
+ "eval_steps_per_second": 4.358,
325
+ "step": 48
326
+ },
327
+ {
328
+ "epoch": 33.0,
329
+ "eval_accuracy": 0.625,
330
+ "eval_loss": 1.1920298337936401,
331
+ "eval_runtime": 0.2285,
332
+ "eval_samples_per_second": 35.005,
333
+ "eval_steps_per_second": 4.376,
334
+ "step": 49
335
+ },
336
+ {
337
+ "epoch": 33.333333333333336,
338
+ "grad_norm": 39.576210021972656,
339
+ "learning_rate": 3.418803418803419e-05,
340
+ "loss": 0.3504,
341
+ "step": 50
342
+ },
343
+ {
344
+ "epoch": 34.0,
345
+ "eval_accuracy": 0.625,
346
+ "eval_loss": 1.1325857639312744,
347
+ "eval_runtime": 0.2278,
348
+ "eval_samples_per_second": 35.122,
349
+ "eval_steps_per_second": 4.39,
350
+ "step": 51
351
+ },
352
+ {
353
+ "epoch": 35.0,
354
+ "eval_accuracy": 0.625,
355
+ "eval_loss": 1.1017863750457764,
356
+ "eval_runtime": 0.2263,
357
+ "eval_samples_per_second": 35.352,
358
+ "eval_steps_per_second": 4.419,
359
+ "step": 53
360
+ },
361
+ {
362
+ "epoch": 36.0,
363
+ "eval_accuracy": 0.625,
364
+ "eval_loss": 1.0970098972320557,
365
+ "eval_runtime": 0.2308,
366
+ "eval_samples_per_second": 34.656,
367
+ "eval_steps_per_second": 4.332,
368
+ "step": 54
369
+ },
370
+ {
371
+ "epoch": 37.0,
372
+ "eval_accuracy": 0.625,
373
+ "eval_loss": 1.1029536724090576,
374
+ "eval_runtime": 0.2758,
375
+ "eval_samples_per_second": 29.01,
376
+ "eval_steps_per_second": 3.626,
377
+ "step": 55
378
+ },
379
+ {
380
+ "epoch": 38.0,
381
+ "eval_accuracy": 0.625,
382
+ "eval_loss": 1.1377930641174316,
383
+ "eval_runtime": 0.226,
384
+ "eval_samples_per_second": 35.391,
385
+ "eval_steps_per_second": 4.424,
386
+ "step": 57
387
+ },
388
+ {
389
+ "epoch": 39.0,
390
+ "eval_accuracy": 0.625,
391
+ "eval_loss": 1.1719943284988403,
392
+ "eval_runtime": 0.2317,
393
+ "eval_samples_per_second": 34.529,
394
+ "eval_steps_per_second": 4.316,
395
+ "step": 59
396
+ },
397
+ {
398
+ "epoch": 40.0,
399
+ "grad_norm": 31.4616756439209,
400
+ "learning_rate": 2.9914529914529915e-05,
401
+ "loss": 0.2864,
402
+ "step": 60
403
+ },
404
+ {
405
+ "epoch": 40.0,
406
+ "eval_accuracy": 0.625,
407
+ "eval_loss": 1.1867077350616455,
408
+ "eval_runtime": 0.2264,
409
+ "eval_samples_per_second": 35.336,
410
+ "eval_steps_per_second": 4.417,
411
+ "step": 60
412
+ },
413
+ {
414
+ "epoch": 41.0,
415
+ "eval_accuracy": 0.625,
416
+ "eval_loss": 1.1960291862487793,
417
+ "eval_runtime": 0.2297,
418
+ "eval_samples_per_second": 34.825,
419
+ "eval_steps_per_second": 4.353,
420
+ "step": 61
421
+ },
422
+ {
423
+ "epoch": 42.0,
424
+ "eval_accuracy": 0.625,
425
+ "eval_loss": 1.1959271430969238,
426
+ "eval_runtime": 0.2272,
427
+ "eval_samples_per_second": 35.217,
428
+ "eval_steps_per_second": 4.402,
429
+ "step": 63
430
+ },
431
+ {
432
+ "epoch": 43.0,
433
+ "eval_accuracy": 0.625,
434
+ "eval_loss": 1.1726518869400024,
435
+ "eval_runtime": 0.2279,
436
+ "eval_samples_per_second": 35.11,
437
+ "eval_steps_per_second": 4.389,
438
+ "step": 65
439
+ },
440
+ {
441
+ "epoch": 44.0,
442
+ "eval_accuracy": 0.625,
443
+ "eval_loss": 1.165253758430481,
444
+ "eval_runtime": 0.227,
445
+ "eval_samples_per_second": 35.239,
446
+ "eval_steps_per_second": 4.405,
447
+ "step": 66
448
+ },
449
+ {
450
+ "epoch": 45.0,
451
+ "eval_accuracy": 0.625,
452
+ "eval_loss": 1.1643680334091187,
453
+ "eval_runtime": 0.2339,
454
+ "eval_samples_per_second": 34.204,
455
+ "eval_steps_per_second": 4.276,
456
+ "step": 67
457
+ },
458
+ {
459
+ "epoch": 46.0,
460
+ "eval_accuracy": 0.625,
461
+ "eval_loss": 1.1808971166610718,
462
+ "eval_runtime": 0.2293,
463
+ "eval_samples_per_second": 34.886,
464
+ "eval_steps_per_second": 4.361,
465
+ "step": 69
466
+ },
467
+ {
468
+ "epoch": 46.666666666666664,
469
+ "grad_norm": 18.457019805908203,
470
+ "learning_rate": 2.564102564102564e-05,
471
+ "loss": 0.2357,
472
+ "step": 70
473
+ },
474
+ {
475
+ "epoch": 47.0,
476
+ "eval_accuracy": 0.625,
477
+ "eval_loss": 1.1901675462722778,
478
+ "eval_runtime": 0.2261,
479
+ "eval_samples_per_second": 35.381,
480
+ "eval_steps_per_second": 4.423,
481
+ "step": 71
482
+ },
483
+ {
484
+ "epoch": 48.0,
485
+ "eval_accuracy": 0.625,
486
+ "eval_loss": 1.1872090101242065,
487
+ "eval_runtime": 0.2272,
488
+ "eval_samples_per_second": 35.206,
489
+ "eval_steps_per_second": 4.401,
490
+ "step": 72
491
+ },
492
+ {
493
+ "epoch": 49.0,
494
+ "eval_accuracy": 0.625,
495
+ "eval_loss": 1.189396858215332,
496
+ "eval_runtime": 0.2263,
497
+ "eval_samples_per_second": 35.345,
498
+ "eval_steps_per_second": 4.418,
499
+ "step": 73
500
+ },
501
+ {
502
+ "epoch": 50.0,
503
+ "eval_accuracy": 0.625,
504
+ "eval_loss": 1.1982437372207642,
505
+ "eval_runtime": 0.2428,
506
+ "eval_samples_per_second": 32.942,
507
+ "eval_steps_per_second": 4.118,
508
+ "step": 75
509
+ },
510
+ {
511
+ "epoch": 51.0,
512
+ "eval_accuracy": 0.625,
513
+ "eval_loss": 1.2417709827423096,
514
+ "eval_runtime": 0.2272,
515
+ "eval_samples_per_second": 35.217,
516
+ "eval_steps_per_second": 4.402,
517
+ "step": 77
518
+ },
519
+ {
520
+ "epoch": 52.0,
521
+ "eval_accuracy": 0.625,
522
+ "eval_loss": 1.2575104236602783,
523
+ "eval_runtime": 0.2279,
524
+ "eval_samples_per_second": 35.099,
525
+ "eval_steps_per_second": 4.387,
526
+ "step": 78
527
+ },
528
+ {
529
+ "epoch": 53.0,
530
+ "eval_accuracy": 0.625,
531
+ "eval_loss": 1.2707685232162476,
532
+ "eval_runtime": 0.2281,
533
+ "eval_samples_per_second": 35.068,
534
+ "eval_steps_per_second": 4.384,
535
+ "step": 79
536
+ },
537
+ {
538
+ "epoch": 53.333333333333336,
539
+ "grad_norm": 4.976161479949951,
540
+ "learning_rate": 2.1367521367521368e-05,
541
+ "loss": 0.1561,
542
+ "step": 80
543
+ },
544
+ {
545
+ "epoch": 54.0,
546
+ "eval_accuracy": 0.625,
547
+ "eval_loss": 1.2665772438049316,
548
+ "eval_runtime": 0.2284,
549
+ "eval_samples_per_second": 35.019,
550
+ "eval_steps_per_second": 4.377,
551
+ "step": 81
552
+ },
553
+ {
554
+ "epoch": 55.0,
555
+ "eval_accuracy": 0.625,
556
+ "eval_loss": 1.2240548133850098,
557
+ "eval_runtime": 0.2281,
558
+ "eval_samples_per_second": 35.073,
559
+ "eval_steps_per_second": 4.384,
560
+ "step": 83
561
+ },
562
+ {
563
+ "epoch": 56.0,
564
+ "eval_accuracy": 0.625,
565
+ "eval_loss": 1.2088531255722046,
566
+ "eval_runtime": 0.227,
567
+ "eval_samples_per_second": 35.239,
568
+ "eval_steps_per_second": 4.405,
569
+ "step": 84
570
+ },
571
+ {
572
+ "epoch": 57.0,
573
+ "eval_accuracy": 0.625,
574
+ "eval_loss": 1.1913509368896484,
575
+ "eval_runtime": 0.2251,
576
+ "eval_samples_per_second": 35.546,
577
+ "eval_steps_per_second": 4.443,
578
+ "step": 85
579
+ },
580
+ {
581
+ "epoch": 58.0,
582
+ "eval_accuracy": 0.625,
583
+ "eval_loss": 1.1558996438980103,
584
+ "eval_runtime": 0.231,
585
+ "eval_samples_per_second": 34.632,
586
+ "eval_steps_per_second": 4.329,
587
+ "step": 87
588
+ },
589
+ {
590
+ "epoch": 59.0,
591
+ "eval_accuracy": 0.625,
592
+ "eval_loss": 1.1386878490447998,
593
+ "eval_runtime": 0.2302,
594
+ "eval_samples_per_second": 34.748,
595
+ "eval_steps_per_second": 4.344,
596
+ "step": 89
597
+ },
598
+ {
599
+ "epoch": 60.0,
600
+ "grad_norm": 19.57244300842285,
601
+ "learning_rate": 1.7094017094017095e-05,
602
+ "loss": 0.1453,
603
+ "step": 90
604
+ },
605
+ {
606
+ "epoch": 60.0,
607
+ "eval_accuracy": 0.625,
608
+ "eval_loss": 1.1336504220962524,
609
+ "eval_runtime": 0.2275,
610
+ "eval_samples_per_second": 35.169,
611
+ "eval_steps_per_second": 4.396,
612
+ "step": 90
613
+ },
614
+ {
615
+ "epoch": 61.0,
616
+ "eval_accuracy": 0.625,
617
+ "eval_loss": 1.1289597749710083,
618
+ "eval_runtime": 0.2329,
619
+ "eval_samples_per_second": 34.356,
620
+ "eval_steps_per_second": 4.295,
621
+ "step": 91
622
+ },
623
+ {
624
+ "epoch": 62.0,
625
+ "eval_accuracy": 0.625,
626
+ "eval_loss": 1.1369203329086304,
627
+ "eval_runtime": 0.2293,
628
+ "eval_samples_per_second": 34.894,
629
+ "eval_steps_per_second": 4.362,
630
+ "step": 93
631
+ },
632
+ {
633
+ "epoch": 63.0,
634
+ "eval_accuracy": 0.625,
635
+ "eval_loss": 1.1438777446746826,
636
+ "eval_runtime": 0.2263,
637
+ "eval_samples_per_second": 35.359,
638
+ "eval_steps_per_second": 4.42,
639
+ "step": 95
640
+ },
641
+ {
642
+ "epoch": 64.0,
643
+ "eval_accuracy": 0.625,
644
+ "eval_loss": 1.14479660987854,
645
+ "eval_runtime": 0.2307,
646
+ "eval_samples_per_second": 34.673,
647
+ "eval_steps_per_second": 4.334,
648
+ "step": 96
649
+ },
650
+ {
651
+ "epoch": 65.0,
652
+ "eval_accuracy": 0.625,
653
+ "eval_loss": 1.153009057044983,
654
+ "eval_runtime": 0.2302,
655
+ "eval_samples_per_second": 34.748,
656
+ "eval_steps_per_second": 4.344,
657
+ "step": 97
658
+ },
659
+ {
660
+ "epoch": 66.0,
661
+ "eval_accuracy": 0.625,
662
+ "eval_loss": 1.1718435287475586,
663
+ "eval_runtime": 0.2286,
664
+ "eval_samples_per_second": 35.003,
665
+ "eval_steps_per_second": 4.375,
666
+ "step": 99
667
+ },
668
+ {
669
+ "epoch": 66.66666666666667,
670
+ "grad_norm": 5.6247944831848145,
671
+ "learning_rate": 1.282051282051282e-05,
672
+ "loss": 0.1271,
673
+ "step": 100
674
+ },
675
+ {
676
+ "epoch": 67.0,
677
+ "eval_accuracy": 0.625,
678
+ "eval_loss": 1.1965450048446655,
679
+ "eval_runtime": 0.2246,
680
+ "eval_samples_per_second": 35.611,
681
+ "eval_steps_per_second": 4.451,
682
+ "step": 101
683
+ },
684
+ {
685
+ "epoch": 68.0,
686
+ "eval_accuracy": 0.625,
687
+ "eval_loss": 1.2091799974441528,
688
+ "eval_runtime": 0.2266,
689
+ "eval_samples_per_second": 35.297,
690
+ "eval_steps_per_second": 4.412,
691
+ "step": 102
692
+ },
693
+ {
694
+ "epoch": 69.0,
695
+ "eval_accuracy": 0.625,
696
+ "eval_loss": 1.2176190614700317,
697
+ "eval_runtime": 0.226,
698
+ "eval_samples_per_second": 35.4,
699
+ "eval_steps_per_second": 4.425,
700
+ "step": 103
701
+ },
702
+ {
703
+ "epoch": 70.0,
704
+ "eval_accuracy": 0.625,
705
+ "eval_loss": 1.2336797714233398,
706
+ "eval_runtime": 0.2275,
707
+ "eval_samples_per_second": 35.172,
708
+ "eval_steps_per_second": 4.397,
709
+ "step": 105
710
+ },
711
+ {
712
+ "epoch": 71.0,
713
+ "eval_accuracy": 0.625,
714
+ "eval_loss": 1.2376230955123901,
715
+ "eval_runtime": 0.2255,
716
+ "eval_samples_per_second": 35.481,
717
+ "eval_steps_per_second": 4.435,
718
+ "step": 107
719
+ },
720
+ {
721
+ "epoch": 72.0,
722
+ "eval_accuracy": 0.625,
723
+ "eval_loss": 1.238419532775879,
724
+ "eval_runtime": 0.2258,
725
+ "eval_samples_per_second": 35.428,
726
+ "eval_steps_per_second": 4.429,
727
+ "step": 108
728
+ },
729
+ {
730
+ "epoch": 73.0,
731
+ "eval_accuracy": 0.625,
732
+ "eval_loss": 1.2378357648849487,
733
+ "eval_runtime": 0.2254,
734
+ "eval_samples_per_second": 35.491,
735
+ "eval_steps_per_second": 4.436,
736
+ "step": 109
737
+ },
738
+ {
739
+ "epoch": 73.33333333333333,
740
+ "grad_norm": 16.670150756835938,
741
+ "learning_rate": 8.547008547008548e-06,
742
+ "loss": 0.1153,
743
+ "step": 110
744
+ },
745
+ {
746
+ "epoch": 74.0,
747
+ "eval_accuracy": 0.625,
748
+ "eval_loss": 1.238478183746338,
749
+ "eval_runtime": 0.2784,
750
+ "eval_samples_per_second": 28.737,
751
+ "eval_steps_per_second": 3.592,
752
+ "step": 111
753
+ },
754
+ {
755
+ "epoch": 75.0,
756
+ "eval_accuracy": 0.625,
757
+ "eval_loss": 1.2316068410873413,
758
+ "eval_runtime": 0.2262,
759
+ "eval_samples_per_second": 35.368,
760
+ "eval_steps_per_second": 4.421,
761
+ "step": 113
762
+ },
763
+ {
764
+ "epoch": 76.0,
765
+ "eval_accuracy": 0.625,
766
+ "eval_loss": 1.2274171113967896,
767
+ "eval_runtime": 0.226,
768
+ "eval_samples_per_second": 35.392,
769
+ "eval_steps_per_second": 4.424,
770
+ "step": 114
771
+ },
772
+ {
773
+ "epoch": 77.0,
774
+ "eval_accuracy": 0.625,
775
+ "eval_loss": 1.2251871824264526,
776
+ "eval_runtime": 0.2311,
777
+ "eval_samples_per_second": 34.618,
778
+ "eval_steps_per_second": 4.327,
779
+ "step": 115
780
+ },
781
+ {
782
+ "epoch": 78.0,
783
+ "eval_accuracy": 0.625,
784
+ "eval_loss": 1.2195590734481812,
785
+ "eval_runtime": 0.2344,
786
+ "eval_samples_per_second": 34.126,
787
+ "eval_steps_per_second": 4.266,
788
+ "step": 117
789
+ },
790
+ {
791
+ "epoch": 79.0,
792
+ "eval_accuracy": 0.625,
793
+ "eval_loss": 1.2144805192947388,
794
+ "eval_runtime": 0.2276,
795
+ "eval_samples_per_second": 35.145,
796
+ "eval_steps_per_second": 4.393,
797
+ "step": 119
798
+ },
799
+ {
800
+ "epoch": 80.0,
801
+ "grad_norm": 18.376235961914062,
802
+ "learning_rate": 4.273504273504274e-06,
803
+ "loss": 0.0882,
804
+ "step": 120
805
+ },
806
+ {
807
+ "epoch": 80.0,
808
+ "eval_accuracy": 0.625,
809
+ "eval_loss": 1.213006615638733,
810
+ "eval_runtime": 0.2356,
811
+ "eval_samples_per_second": 33.955,
812
+ "eval_steps_per_second": 4.244,
813
+ "step": 120
814
+ },
815
+ {
816
+ "epoch": 81.0,
817
+ "eval_accuracy": 0.625,
818
+ "eval_loss": 1.2117276191711426,
819
+ "eval_runtime": 0.2323,
820
+ "eval_samples_per_second": 34.443,
821
+ "eval_steps_per_second": 4.305,
822
+ "step": 121
823
+ },
824
+ {
825
+ "epoch": 82.0,
826
+ "eval_accuracy": 0.625,
827
+ "eval_loss": 1.2097160816192627,
828
+ "eval_runtime": 0.2308,
829
+ "eval_samples_per_second": 34.655,
830
+ "eval_steps_per_second": 4.332,
831
+ "step": 123
832
+ },
833
+ {
834
+ "epoch": 83.0,
835
+ "eval_accuracy": 0.625,
836
+ "eval_loss": 1.2075334787368774,
837
+ "eval_runtime": 0.2252,
838
+ "eval_samples_per_second": 35.532,
839
+ "eval_steps_per_second": 4.441,
840
+ "step": 125
841
+ },
842
+ {
843
+ "epoch": 84.0,
844
+ "eval_accuracy": 0.625,
845
+ "eval_loss": 1.205414056777954,
846
+ "eval_runtime": 0.2269,
847
+ "eval_samples_per_second": 35.264,
848
+ "eval_steps_per_second": 4.408,
849
+ "step": 126
850
+ },
851
+ {
852
+ "epoch": 85.0,
853
+ "eval_accuracy": 0.625,
854
+ "eval_loss": 1.2038739919662476,
855
+ "eval_runtime": 0.2445,
856
+ "eval_samples_per_second": 32.718,
857
+ "eval_steps_per_second": 4.09,
858
+ "step": 127
859
+ },
860
+ {
861
+ "epoch": 86.0,
862
+ "eval_accuracy": 0.625,
863
+ "eval_loss": 1.2025001049041748,
864
+ "eval_runtime": 0.244,
865
+ "eval_samples_per_second": 32.782,
866
+ "eval_steps_per_second": 4.098,
867
+ "step": 129
868
+ },
869
+ {
870
+ "epoch": 86.66666666666667,
871
+ "grad_norm": 6.174490928649902,
872
+ "learning_rate": 0.0,
873
+ "loss": 0.0987,
874
+ "step": 130
875
+ },
876
+ {
877
+ "epoch": 86.66666666666667,
878
+ "eval_accuracy": 0.625,
879
+ "eval_loss": 1.2021381855010986,
880
+ "eval_runtime": 0.2265,
881
+ "eval_samples_per_second": 35.317,
882
+ "eval_steps_per_second": 4.415,
883
+ "step": 130
884
+ },
885
+ {
886
+ "epoch": 86.66666666666667,
887
+ "step": 130,
888
+ "total_flos": 1.574865655328932e+17,
889
+ "train_loss": 0.3546037518061124,
890
+ "train_runtime": 225.362,
891
+ "train_samples_per_second": 41.533,
892
+ "train_steps_per_second": 0.577
893
+ }
894
+ ],
895
+ "logging_steps": 10,
896
+ "max_steps": 130,
897
+ "num_input_tokens_seen": 0,
898
+ "num_train_epochs": 130,
899
+ "save_steps": 500,
900
+ "stateful_callbacks": {
901
+ "TrainerControl": {
902
+ "args": {
903
+ "should_epoch_stop": false,
904
+ "should_evaluate": false,
905
+ "should_log": false,
906
+ "should_save": false,
907
+ "should_training_stop": false
908
+ },
909
+ "attributes": {}
910
+ }
911
+ },
912
+ "total_flos": 1.574865655328932e+17,
913
+ "train_batch_size": 32,
914
+ "trial_name": null,
915
+ "trial_params": null
916
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a96c4a20e581fe9e08fca4557c67ff0e68b5b590c00d24f0cf2780c856e33981
3
+ size 5240