vishalkatheriya18
commited on
Commit
•
9711163
1
Parent(s):
818433f
End of training
Browse files- README.md +164 -0
- all_results.json +13 -0
- config.json +63 -0
- eval_results.json +8 -0
- model.safetensors +3 -0
- preprocessor_config.json +22 -0
- train_results.json +8 -0
- trainer_state.json +916 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/convnextv2-tiny-1k-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: convnextv2-tiny-1k-224-finetuned-eurosat
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: train
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.625
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# convnextv2-tiny-1k-224-finetuned-eurosat
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 1.2021
|
36 |
+
- Accuracy: 0.625
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 32
|
57 |
+
- eval_batch_size: 32
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 128
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 130
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|
|
70 |
+
| No log | 1.0 | 1 | 2.0300 | 0.0 |
|
71 |
+
| No log | 2.0 | 3 | 2.0208 | 0.0 |
|
72 |
+
| No log | 3.0 | 5 | 1.9970 | 0.0 |
|
73 |
+
| No log | 4.0 | 6 | 1.9853 | 0.125 |
|
74 |
+
| No log | 5.0 | 7 | 1.9666 | 0.125 |
|
75 |
+
| No log | 6.0 | 9 | 1.9215 | 0.25 |
|
76 |
+
| 1.024 | 7.0 | 11 | 1.8757 | 0.125 |
|
77 |
+
| 1.024 | 8.0 | 12 | 1.8580 | 0.125 |
|
78 |
+
| 1.024 | 9.0 | 13 | 1.8413 | 0.125 |
|
79 |
+
| 1.024 | 10.0 | 15 | 1.7954 | 0.375 |
|
80 |
+
| 1.024 | 11.0 | 17 | 1.7510 | 0.5 |
|
81 |
+
| 1.024 | 12.0 | 18 | 1.7309 | 0.625 |
|
82 |
+
| 1.024 | 13.0 | 19 | 1.7132 | 0.625 |
|
83 |
+
| 0.8487 | 14.0 | 21 | 1.6768 | 0.625 |
|
84 |
+
| 0.8487 | 15.0 | 23 | 1.6402 | 0.625 |
|
85 |
+
| 0.8487 | 16.0 | 24 | 1.6197 | 0.625 |
|
86 |
+
| 0.8487 | 17.0 | 25 | 1.5952 | 0.625 |
|
87 |
+
| 0.8487 | 18.0 | 27 | 1.5259 | 0.625 |
|
88 |
+
| 0.8487 | 19.0 | 29 | 1.4599 | 0.625 |
|
89 |
+
| 0.6549 | 20.0 | 30 | 1.4526 | 0.625 |
|
90 |
+
| 0.6549 | 21.0 | 31 | 1.4459 | 0.625 |
|
91 |
+
| 0.6549 | 22.0 | 33 | 1.4222 | 0.625 |
|
92 |
+
| 0.6549 | 23.0 | 35 | 1.4136 | 0.625 |
|
93 |
+
| 0.6549 | 24.0 | 36 | 1.4238 | 0.625 |
|
94 |
+
| 0.6549 | 25.0 | 37 | 1.4286 | 0.625 |
|
95 |
+
| 0.6549 | 26.0 | 39 | 1.4231 | 0.625 |
|
96 |
+
| 0.479 | 27.0 | 41 | 1.3964 | 0.625 |
|
97 |
+
| 0.479 | 28.0 | 42 | 1.3757 | 0.625 |
|
98 |
+
| 0.479 | 29.0 | 43 | 1.3501 | 0.625 |
|
99 |
+
| 0.479 | 30.0 | 45 | 1.2779 | 0.625 |
|
100 |
+
| 0.479 | 31.0 | 47 | 1.2360 | 0.625 |
|
101 |
+
| 0.479 | 32.0 | 48 | 1.2185 | 0.625 |
|
102 |
+
| 0.479 | 33.0 | 49 | 1.1920 | 0.625 |
|
103 |
+
| 0.3504 | 34.0 | 51 | 1.1326 | 0.625 |
|
104 |
+
| 0.3504 | 35.0 | 53 | 1.1018 | 0.625 |
|
105 |
+
| 0.3504 | 36.0 | 54 | 1.0970 | 0.625 |
|
106 |
+
| 0.3504 | 37.0 | 55 | 1.1030 | 0.625 |
|
107 |
+
| 0.3504 | 38.0 | 57 | 1.1378 | 0.625 |
|
108 |
+
| 0.3504 | 39.0 | 59 | 1.1720 | 0.625 |
|
109 |
+
| 0.2864 | 40.0 | 60 | 1.1867 | 0.625 |
|
110 |
+
| 0.2864 | 41.0 | 61 | 1.1960 | 0.625 |
|
111 |
+
| 0.2864 | 42.0 | 63 | 1.1959 | 0.625 |
|
112 |
+
| 0.2864 | 43.0 | 65 | 1.1727 | 0.625 |
|
113 |
+
| 0.2864 | 44.0 | 66 | 1.1653 | 0.625 |
|
114 |
+
| 0.2864 | 45.0 | 67 | 1.1644 | 0.625 |
|
115 |
+
| 0.2864 | 46.0 | 69 | 1.1809 | 0.625 |
|
116 |
+
| 0.2357 | 47.0 | 71 | 1.1902 | 0.625 |
|
117 |
+
| 0.2357 | 48.0 | 72 | 1.1872 | 0.625 |
|
118 |
+
| 0.2357 | 49.0 | 73 | 1.1894 | 0.625 |
|
119 |
+
| 0.2357 | 50.0 | 75 | 1.1982 | 0.625 |
|
120 |
+
| 0.2357 | 51.0 | 77 | 1.2418 | 0.625 |
|
121 |
+
| 0.2357 | 52.0 | 78 | 1.2575 | 0.625 |
|
122 |
+
| 0.2357 | 53.0 | 79 | 1.2708 | 0.625 |
|
123 |
+
| 0.1561 | 54.0 | 81 | 1.2666 | 0.625 |
|
124 |
+
| 0.1561 | 55.0 | 83 | 1.2241 | 0.625 |
|
125 |
+
| 0.1561 | 56.0 | 84 | 1.2089 | 0.625 |
|
126 |
+
| 0.1561 | 57.0 | 85 | 1.1914 | 0.625 |
|
127 |
+
| 0.1561 | 58.0 | 87 | 1.1559 | 0.625 |
|
128 |
+
| 0.1561 | 59.0 | 89 | 1.1387 | 0.625 |
|
129 |
+
| 0.1453 | 60.0 | 90 | 1.1337 | 0.625 |
|
130 |
+
| 0.1453 | 61.0 | 91 | 1.1290 | 0.625 |
|
131 |
+
| 0.1453 | 62.0 | 93 | 1.1369 | 0.625 |
|
132 |
+
| 0.1453 | 63.0 | 95 | 1.1439 | 0.625 |
|
133 |
+
| 0.1453 | 64.0 | 96 | 1.1448 | 0.625 |
|
134 |
+
| 0.1453 | 65.0 | 97 | 1.1530 | 0.625 |
|
135 |
+
| 0.1453 | 66.0 | 99 | 1.1718 | 0.625 |
|
136 |
+
| 0.1271 | 67.0 | 101 | 1.1965 | 0.625 |
|
137 |
+
| 0.1271 | 68.0 | 102 | 1.2092 | 0.625 |
|
138 |
+
| 0.1271 | 69.0 | 103 | 1.2176 | 0.625 |
|
139 |
+
| 0.1271 | 70.0 | 105 | 1.2337 | 0.625 |
|
140 |
+
| 0.1271 | 71.0 | 107 | 1.2376 | 0.625 |
|
141 |
+
| 0.1271 | 72.0 | 108 | 1.2384 | 0.625 |
|
142 |
+
| 0.1271 | 73.0 | 109 | 1.2378 | 0.625 |
|
143 |
+
| 0.1153 | 74.0 | 111 | 1.2385 | 0.625 |
|
144 |
+
| 0.1153 | 75.0 | 113 | 1.2316 | 0.625 |
|
145 |
+
| 0.1153 | 76.0 | 114 | 1.2274 | 0.625 |
|
146 |
+
| 0.1153 | 77.0 | 115 | 1.2252 | 0.625 |
|
147 |
+
| 0.1153 | 78.0 | 117 | 1.2196 | 0.625 |
|
148 |
+
| 0.1153 | 79.0 | 119 | 1.2145 | 0.625 |
|
149 |
+
| 0.0882 | 80.0 | 120 | 1.2130 | 0.625 |
|
150 |
+
| 0.0882 | 81.0 | 121 | 1.2117 | 0.625 |
|
151 |
+
| 0.0882 | 82.0 | 123 | 1.2097 | 0.625 |
|
152 |
+
| 0.0882 | 83.0 | 125 | 1.2075 | 0.625 |
|
153 |
+
| 0.0882 | 84.0 | 126 | 1.2054 | 0.625 |
|
154 |
+
| 0.0882 | 85.0 | 127 | 1.2039 | 0.625 |
|
155 |
+
| 0.0882 | 86.0 | 129 | 1.2025 | 0.625 |
|
156 |
+
| 0.0987 | 86.6667 | 130 | 1.2021 | 0.625 |
|
157 |
+
|
158 |
+
|
159 |
+
### Framework versions
|
160 |
+
|
161 |
+
- Transformers 4.44.0
|
162 |
+
- Pytorch 2.4.0
|
163 |
+
- Datasets 2.21.0
|
164 |
+
- Tokenizers 0.19.1
|
all_results.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 86.66666666666667,
|
3 |
+
"eval_accuracy": 0.625,
|
4 |
+
"eval_loss": 1.2021381855010986,
|
5 |
+
"eval_runtime": 0.2304,
|
6 |
+
"eval_samples_per_second": 34.717,
|
7 |
+
"eval_steps_per_second": 4.34,
|
8 |
+
"total_flos": 1.574865655328932e+17,
|
9 |
+
"train_loss": 0.3546037518061124,
|
10 |
+
"train_runtime": 225.362,
|
11 |
+
"train_samples_per_second": 41.533,
|
12 |
+
"train_steps_per_second": 0.577
|
13 |
+
}
|
config.json
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/convnextv2-tiny-1k-224",
|
3 |
+
"architectures": [
|
4 |
+
"ConvNextV2ForImageClassification"
|
5 |
+
],
|
6 |
+
"depths": [
|
7 |
+
3,
|
8 |
+
3,
|
9 |
+
9,
|
10 |
+
3
|
11 |
+
],
|
12 |
+
"drop_path_rate": 0.0,
|
13 |
+
"hidden_act": "gelu",
|
14 |
+
"hidden_sizes": [
|
15 |
+
96,
|
16 |
+
192,
|
17 |
+
384,
|
18 |
+
768
|
19 |
+
],
|
20 |
+
"id2label": {
|
21 |
+
"0": "Joggers",
|
22 |
+
"1": "capri",
|
23 |
+
"2": "jeans",
|
24 |
+
"3": "legging",
|
25 |
+
"4": "plazzo",
|
26 |
+
"5": "shorts",
|
27 |
+
"6": "skirt",
|
28 |
+
"7": "trouser"
|
29 |
+
},
|
30 |
+
"image_size": 224,
|
31 |
+
"initializer_range": 0.02,
|
32 |
+
"label2id": {
|
33 |
+
"Joggers": 0,
|
34 |
+
"capri": 1,
|
35 |
+
"jeans": 2,
|
36 |
+
"legging": 3,
|
37 |
+
"plazzo": 4,
|
38 |
+
"shorts": 5,
|
39 |
+
"skirt": 6,
|
40 |
+
"trouser": 7
|
41 |
+
},
|
42 |
+
"layer_norm_eps": 1e-12,
|
43 |
+
"model_type": "convnextv2",
|
44 |
+
"num_channels": 3,
|
45 |
+
"num_stages": 4,
|
46 |
+
"out_features": [
|
47 |
+
"stage4"
|
48 |
+
],
|
49 |
+
"out_indices": [
|
50 |
+
4
|
51 |
+
],
|
52 |
+
"patch_size": 4,
|
53 |
+
"problem_type": "single_label_classification",
|
54 |
+
"stage_names": [
|
55 |
+
"stem",
|
56 |
+
"stage1",
|
57 |
+
"stage2",
|
58 |
+
"stage3",
|
59 |
+
"stage4"
|
60 |
+
],
|
61 |
+
"torch_dtype": "float32",
|
62 |
+
"transformers_version": "4.44.0"
|
63 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 86.66666666666667,
|
3 |
+
"eval_accuracy": 0.625,
|
4 |
+
"eval_loss": 1.2021381855010986,
|
5 |
+
"eval_runtime": 0.2304,
|
6 |
+
"eval_samples_per_second": 34.717,
|
7 |
+
"eval_steps_per_second": 4.34
|
8 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76e72daa47f949e84cf8be0ea3c00e00e92ed8369d17437418d3c618795149c2
|
3 |
+
size 111514288
|
preprocessor_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_pct": 0.875,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.485,
|
8 |
+
0.456,
|
9 |
+
0.406
|
10 |
+
],
|
11 |
+
"image_processor_type": "ConvNextImageProcessor",
|
12 |
+
"image_std": [
|
13 |
+
0.229,
|
14 |
+
0.224,
|
15 |
+
0.225
|
16 |
+
],
|
17 |
+
"resample": 3,
|
18 |
+
"rescale_factor": 0.00392156862745098,
|
19 |
+
"size": {
|
20 |
+
"shortest_edge": 224
|
21 |
+
}
|
22 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 86.66666666666667,
|
3 |
+
"total_flos": 1.574865655328932e+17,
|
4 |
+
"train_loss": 0.3546037518061124,
|
5 |
+
"train_runtime": 225.362,
|
6 |
+
"train_samples_per_second": 41.533,
|
7 |
+
"train_steps_per_second": 0.577
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,916 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 86.66666666666667,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 130,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 1.0,
|
13 |
+
"eval_accuracy": 0.0,
|
14 |
+
"eval_loss": 2.030040740966797,
|
15 |
+
"eval_runtime": 0.2932,
|
16 |
+
"eval_samples_per_second": 27.282,
|
17 |
+
"eval_steps_per_second": 3.41,
|
18 |
+
"step": 1
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"epoch": 2.0,
|
22 |
+
"eval_accuracy": 0.0,
|
23 |
+
"eval_loss": 2.020792007446289,
|
24 |
+
"eval_runtime": 0.2487,
|
25 |
+
"eval_samples_per_second": 32.169,
|
26 |
+
"eval_steps_per_second": 4.021,
|
27 |
+
"step": 3
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 3.0,
|
31 |
+
"eval_accuracy": 0.0,
|
32 |
+
"eval_loss": 1.996970534324646,
|
33 |
+
"eval_runtime": 0.2271,
|
34 |
+
"eval_samples_per_second": 35.23,
|
35 |
+
"eval_steps_per_second": 4.404,
|
36 |
+
"step": 5
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"epoch": 4.0,
|
40 |
+
"eval_accuracy": 0.125,
|
41 |
+
"eval_loss": 1.9852917194366455,
|
42 |
+
"eval_runtime": 0.2294,
|
43 |
+
"eval_samples_per_second": 34.875,
|
44 |
+
"eval_steps_per_second": 4.359,
|
45 |
+
"step": 6
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 5.0,
|
49 |
+
"eval_accuracy": 0.125,
|
50 |
+
"eval_loss": 1.9666370153427124,
|
51 |
+
"eval_runtime": 0.23,
|
52 |
+
"eval_samples_per_second": 34.788,
|
53 |
+
"eval_steps_per_second": 4.348,
|
54 |
+
"step": 7
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 6.0,
|
58 |
+
"eval_accuracy": 0.25,
|
59 |
+
"eval_loss": 1.9215028285980225,
|
60 |
+
"eval_runtime": 0.2245,
|
61 |
+
"eval_samples_per_second": 35.632,
|
62 |
+
"eval_steps_per_second": 4.454,
|
63 |
+
"step": 9
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 6.666666666666667,
|
67 |
+
"grad_norm": 14.784972190856934,
|
68 |
+
"learning_rate": 3.846153846153846e-05,
|
69 |
+
"loss": 1.024,
|
70 |
+
"step": 10
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"epoch": 7.0,
|
74 |
+
"eval_accuracy": 0.125,
|
75 |
+
"eval_loss": 1.8757238388061523,
|
76 |
+
"eval_runtime": 0.2259,
|
77 |
+
"eval_samples_per_second": 35.411,
|
78 |
+
"eval_steps_per_second": 4.426,
|
79 |
+
"step": 11
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 8.0,
|
83 |
+
"eval_accuracy": 0.125,
|
84 |
+
"eval_loss": 1.8579578399658203,
|
85 |
+
"eval_runtime": 0.2276,
|
86 |
+
"eval_samples_per_second": 35.149,
|
87 |
+
"eval_steps_per_second": 4.394,
|
88 |
+
"step": 12
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"epoch": 9.0,
|
92 |
+
"eval_accuracy": 0.125,
|
93 |
+
"eval_loss": 1.8413233757019043,
|
94 |
+
"eval_runtime": 0.232,
|
95 |
+
"eval_samples_per_second": 34.49,
|
96 |
+
"eval_steps_per_second": 4.311,
|
97 |
+
"step": 13
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"epoch": 10.0,
|
101 |
+
"eval_accuracy": 0.375,
|
102 |
+
"eval_loss": 1.7954258918762207,
|
103 |
+
"eval_runtime": 0.2267,
|
104 |
+
"eval_samples_per_second": 35.29,
|
105 |
+
"eval_steps_per_second": 4.411,
|
106 |
+
"step": 15
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 11.0,
|
110 |
+
"eval_accuracy": 0.5,
|
111 |
+
"eval_loss": 1.7509543895721436,
|
112 |
+
"eval_runtime": 0.2337,
|
113 |
+
"eval_samples_per_second": 34.23,
|
114 |
+
"eval_steps_per_second": 4.279,
|
115 |
+
"step": 17
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 12.0,
|
119 |
+
"eval_accuracy": 0.625,
|
120 |
+
"eval_loss": 1.7309346199035645,
|
121 |
+
"eval_runtime": 0.2261,
|
122 |
+
"eval_samples_per_second": 35.381,
|
123 |
+
"eval_steps_per_second": 4.423,
|
124 |
+
"step": 18
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"epoch": 13.0,
|
128 |
+
"eval_accuracy": 0.625,
|
129 |
+
"eval_loss": 1.7131527662277222,
|
130 |
+
"eval_runtime": 0.2297,
|
131 |
+
"eval_samples_per_second": 34.829,
|
132 |
+
"eval_steps_per_second": 4.354,
|
133 |
+
"step": 19
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"epoch": 13.333333333333334,
|
137 |
+
"grad_norm": 9.231935501098633,
|
138 |
+
"learning_rate": 4.700854700854701e-05,
|
139 |
+
"loss": 0.8487,
|
140 |
+
"step": 20
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 14.0,
|
144 |
+
"eval_accuracy": 0.625,
|
145 |
+
"eval_loss": 1.6768202781677246,
|
146 |
+
"eval_runtime": 0.2263,
|
147 |
+
"eval_samples_per_second": 35.354,
|
148 |
+
"eval_steps_per_second": 4.419,
|
149 |
+
"step": 21
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 15.0,
|
153 |
+
"eval_accuracy": 0.625,
|
154 |
+
"eval_loss": 1.64021635055542,
|
155 |
+
"eval_runtime": 0.2376,
|
156 |
+
"eval_samples_per_second": 33.673,
|
157 |
+
"eval_steps_per_second": 4.209,
|
158 |
+
"step": 23
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 16.0,
|
162 |
+
"eval_accuracy": 0.625,
|
163 |
+
"eval_loss": 1.6197324991226196,
|
164 |
+
"eval_runtime": 0.2274,
|
165 |
+
"eval_samples_per_second": 35.183,
|
166 |
+
"eval_steps_per_second": 4.398,
|
167 |
+
"step": 24
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"epoch": 17.0,
|
171 |
+
"eval_accuracy": 0.625,
|
172 |
+
"eval_loss": 1.5951614379882812,
|
173 |
+
"eval_runtime": 0.2246,
|
174 |
+
"eval_samples_per_second": 35.616,
|
175 |
+
"eval_steps_per_second": 4.452,
|
176 |
+
"step": 25
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 18.0,
|
180 |
+
"eval_accuracy": 0.625,
|
181 |
+
"eval_loss": 1.525948166847229,
|
182 |
+
"eval_runtime": 0.229,
|
183 |
+
"eval_samples_per_second": 34.929,
|
184 |
+
"eval_steps_per_second": 4.366,
|
185 |
+
"step": 27
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 19.0,
|
189 |
+
"eval_accuracy": 0.625,
|
190 |
+
"eval_loss": 1.4598863124847412,
|
191 |
+
"eval_runtime": 0.228,
|
192 |
+
"eval_samples_per_second": 35.095,
|
193 |
+
"eval_steps_per_second": 4.387,
|
194 |
+
"step": 29
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 20.0,
|
198 |
+
"grad_norm": 15.795075416564941,
|
199 |
+
"learning_rate": 4.2735042735042735e-05,
|
200 |
+
"loss": 0.6549,
|
201 |
+
"step": 30
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 20.0,
|
205 |
+
"eval_accuracy": 0.625,
|
206 |
+
"eval_loss": 1.4526441097259521,
|
207 |
+
"eval_runtime": 0.2272,
|
208 |
+
"eval_samples_per_second": 35.213,
|
209 |
+
"eval_steps_per_second": 4.402,
|
210 |
+
"step": 30
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"epoch": 21.0,
|
214 |
+
"eval_accuracy": 0.625,
|
215 |
+
"eval_loss": 1.4458982944488525,
|
216 |
+
"eval_runtime": 0.227,
|
217 |
+
"eval_samples_per_second": 35.238,
|
218 |
+
"eval_steps_per_second": 4.405,
|
219 |
+
"step": 31
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 22.0,
|
223 |
+
"eval_accuracy": 0.625,
|
224 |
+
"eval_loss": 1.4222255945205688,
|
225 |
+
"eval_runtime": 0.2296,
|
226 |
+
"eval_samples_per_second": 34.847,
|
227 |
+
"eval_steps_per_second": 4.356,
|
228 |
+
"step": 33
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"epoch": 23.0,
|
232 |
+
"eval_accuracy": 0.625,
|
233 |
+
"eval_loss": 1.4135932922363281,
|
234 |
+
"eval_runtime": 0.23,
|
235 |
+
"eval_samples_per_second": 34.776,
|
236 |
+
"eval_steps_per_second": 4.347,
|
237 |
+
"step": 35
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 24.0,
|
241 |
+
"eval_accuracy": 0.625,
|
242 |
+
"eval_loss": 1.4238104820251465,
|
243 |
+
"eval_runtime": 0.2362,
|
244 |
+
"eval_samples_per_second": 33.867,
|
245 |
+
"eval_steps_per_second": 4.233,
|
246 |
+
"step": 36
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"epoch": 25.0,
|
250 |
+
"eval_accuracy": 0.625,
|
251 |
+
"eval_loss": 1.4286460876464844,
|
252 |
+
"eval_runtime": 0.2278,
|
253 |
+
"eval_samples_per_second": 35.125,
|
254 |
+
"eval_steps_per_second": 4.391,
|
255 |
+
"step": 37
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 26.0,
|
259 |
+
"eval_accuracy": 0.625,
|
260 |
+
"eval_loss": 1.42312753200531,
|
261 |
+
"eval_runtime": 0.2304,
|
262 |
+
"eval_samples_per_second": 34.725,
|
263 |
+
"eval_steps_per_second": 4.341,
|
264 |
+
"step": 39
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 26.666666666666668,
|
268 |
+
"grad_norm": 7.896138668060303,
|
269 |
+
"learning_rate": 3.846153846153846e-05,
|
270 |
+
"loss": 0.479,
|
271 |
+
"step": 40
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 27.0,
|
275 |
+
"eval_accuracy": 0.625,
|
276 |
+
"eval_loss": 1.3963532447814941,
|
277 |
+
"eval_runtime": 0.225,
|
278 |
+
"eval_samples_per_second": 35.554,
|
279 |
+
"eval_steps_per_second": 4.444,
|
280 |
+
"step": 41
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"epoch": 28.0,
|
284 |
+
"eval_accuracy": 0.625,
|
285 |
+
"eval_loss": 1.375662088394165,
|
286 |
+
"eval_runtime": 0.2285,
|
287 |
+
"eval_samples_per_second": 35.009,
|
288 |
+
"eval_steps_per_second": 4.376,
|
289 |
+
"step": 42
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 29.0,
|
293 |
+
"eval_accuracy": 0.625,
|
294 |
+
"eval_loss": 1.350050687789917,
|
295 |
+
"eval_runtime": 0.2264,
|
296 |
+
"eval_samples_per_second": 35.335,
|
297 |
+
"eval_steps_per_second": 4.417,
|
298 |
+
"step": 43
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"epoch": 30.0,
|
302 |
+
"eval_accuracy": 0.625,
|
303 |
+
"eval_loss": 1.277871012687683,
|
304 |
+
"eval_runtime": 0.2258,
|
305 |
+
"eval_samples_per_second": 35.433,
|
306 |
+
"eval_steps_per_second": 4.429,
|
307 |
+
"step": 45
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"epoch": 31.0,
|
311 |
+
"eval_accuracy": 0.625,
|
312 |
+
"eval_loss": 1.2359542846679688,
|
313 |
+
"eval_runtime": 0.2324,
|
314 |
+
"eval_samples_per_second": 34.427,
|
315 |
+
"eval_steps_per_second": 4.303,
|
316 |
+
"step": 47
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 32.0,
|
320 |
+
"eval_accuracy": 0.625,
|
321 |
+
"eval_loss": 1.218457579612732,
|
322 |
+
"eval_runtime": 0.2295,
|
323 |
+
"eval_samples_per_second": 34.863,
|
324 |
+
"eval_steps_per_second": 4.358,
|
325 |
+
"step": 48
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 33.0,
|
329 |
+
"eval_accuracy": 0.625,
|
330 |
+
"eval_loss": 1.1920298337936401,
|
331 |
+
"eval_runtime": 0.2285,
|
332 |
+
"eval_samples_per_second": 35.005,
|
333 |
+
"eval_steps_per_second": 4.376,
|
334 |
+
"step": 49
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"epoch": 33.333333333333336,
|
338 |
+
"grad_norm": 39.576210021972656,
|
339 |
+
"learning_rate": 3.418803418803419e-05,
|
340 |
+
"loss": 0.3504,
|
341 |
+
"step": 50
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 34.0,
|
345 |
+
"eval_accuracy": 0.625,
|
346 |
+
"eval_loss": 1.1325857639312744,
|
347 |
+
"eval_runtime": 0.2278,
|
348 |
+
"eval_samples_per_second": 35.122,
|
349 |
+
"eval_steps_per_second": 4.39,
|
350 |
+
"step": 51
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 35.0,
|
354 |
+
"eval_accuracy": 0.625,
|
355 |
+
"eval_loss": 1.1017863750457764,
|
356 |
+
"eval_runtime": 0.2263,
|
357 |
+
"eval_samples_per_second": 35.352,
|
358 |
+
"eval_steps_per_second": 4.419,
|
359 |
+
"step": 53
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 36.0,
|
363 |
+
"eval_accuracy": 0.625,
|
364 |
+
"eval_loss": 1.0970098972320557,
|
365 |
+
"eval_runtime": 0.2308,
|
366 |
+
"eval_samples_per_second": 34.656,
|
367 |
+
"eval_steps_per_second": 4.332,
|
368 |
+
"step": 54
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 37.0,
|
372 |
+
"eval_accuracy": 0.625,
|
373 |
+
"eval_loss": 1.1029536724090576,
|
374 |
+
"eval_runtime": 0.2758,
|
375 |
+
"eval_samples_per_second": 29.01,
|
376 |
+
"eval_steps_per_second": 3.626,
|
377 |
+
"step": 55
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 38.0,
|
381 |
+
"eval_accuracy": 0.625,
|
382 |
+
"eval_loss": 1.1377930641174316,
|
383 |
+
"eval_runtime": 0.226,
|
384 |
+
"eval_samples_per_second": 35.391,
|
385 |
+
"eval_steps_per_second": 4.424,
|
386 |
+
"step": 57
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 39.0,
|
390 |
+
"eval_accuracy": 0.625,
|
391 |
+
"eval_loss": 1.1719943284988403,
|
392 |
+
"eval_runtime": 0.2317,
|
393 |
+
"eval_samples_per_second": 34.529,
|
394 |
+
"eval_steps_per_second": 4.316,
|
395 |
+
"step": 59
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 40.0,
|
399 |
+
"grad_norm": 31.4616756439209,
|
400 |
+
"learning_rate": 2.9914529914529915e-05,
|
401 |
+
"loss": 0.2864,
|
402 |
+
"step": 60
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 40.0,
|
406 |
+
"eval_accuracy": 0.625,
|
407 |
+
"eval_loss": 1.1867077350616455,
|
408 |
+
"eval_runtime": 0.2264,
|
409 |
+
"eval_samples_per_second": 35.336,
|
410 |
+
"eval_steps_per_second": 4.417,
|
411 |
+
"step": 60
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 41.0,
|
415 |
+
"eval_accuracy": 0.625,
|
416 |
+
"eval_loss": 1.1960291862487793,
|
417 |
+
"eval_runtime": 0.2297,
|
418 |
+
"eval_samples_per_second": 34.825,
|
419 |
+
"eval_steps_per_second": 4.353,
|
420 |
+
"step": 61
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"epoch": 42.0,
|
424 |
+
"eval_accuracy": 0.625,
|
425 |
+
"eval_loss": 1.1959271430969238,
|
426 |
+
"eval_runtime": 0.2272,
|
427 |
+
"eval_samples_per_second": 35.217,
|
428 |
+
"eval_steps_per_second": 4.402,
|
429 |
+
"step": 63
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 43.0,
|
433 |
+
"eval_accuracy": 0.625,
|
434 |
+
"eval_loss": 1.1726518869400024,
|
435 |
+
"eval_runtime": 0.2279,
|
436 |
+
"eval_samples_per_second": 35.11,
|
437 |
+
"eval_steps_per_second": 4.389,
|
438 |
+
"step": 65
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 44.0,
|
442 |
+
"eval_accuracy": 0.625,
|
443 |
+
"eval_loss": 1.165253758430481,
|
444 |
+
"eval_runtime": 0.227,
|
445 |
+
"eval_samples_per_second": 35.239,
|
446 |
+
"eval_steps_per_second": 4.405,
|
447 |
+
"step": 66
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 45.0,
|
451 |
+
"eval_accuracy": 0.625,
|
452 |
+
"eval_loss": 1.1643680334091187,
|
453 |
+
"eval_runtime": 0.2339,
|
454 |
+
"eval_samples_per_second": 34.204,
|
455 |
+
"eval_steps_per_second": 4.276,
|
456 |
+
"step": 67
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"epoch": 46.0,
|
460 |
+
"eval_accuracy": 0.625,
|
461 |
+
"eval_loss": 1.1808971166610718,
|
462 |
+
"eval_runtime": 0.2293,
|
463 |
+
"eval_samples_per_second": 34.886,
|
464 |
+
"eval_steps_per_second": 4.361,
|
465 |
+
"step": 69
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 46.666666666666664,
|
469 |
+
"grad_norm": 18.457019805908203,
|
470 |
+
"learning_rate": 2.564102564102564e-05,
|
471 |
+
"loss": 0.2357,
|
472 |
+
"step": 70
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 47.0,
|
476 |
+
"eval_accuracy": 0.625,
|
477 |
+
"eval_loss": 1.1901675462722778,
|
478 |
+
"eval_runtime": 0.2261,
|
479 |
+
"eval_samples_per_second": 35.381,
|
480 |
+
"eval_steps_per_second": 4.423,
|
481 |
+
"step": 71
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 48.0,
|
485 |
+
"eval_accuracy": 0.625,
|
486 |
+
"eval_loss": 1.1872090101242065,
|
487 |
+
"eval_runtime": 0.2272,
|
488 |
+
"eval_samples_per_second": 35.206,
|
489 |
+
"eval_steps_per_second": 4.401,
|
490 |
+
"step": 72
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"epoch": 49.0,
|
494 |
+
"eval_accuracy": 0.625,
|
495 |
+
"eval_loss": 1.189396858215332,
|
496 |
+
"eval_runtime": 0.2263,
|
497 |
+
"eval_samples_per_second": 35.345,
|
498 |
+
"eval_steps_per_second": 4.418,
|
499 |
+
"step": 73
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 50.0,
|
503 |
+
"eval_accuracy": 0.625,
|
504 |
+
"eval_loss": 1.1982437372207642,
|
505 |
+
"eval_runtime": 0.2428,
|
506 |
+
"eval_samples_per_second": 32.942,
|
507 |
+
"eval_steps_per_second": 4.118,
|
508 |
+
"step": 75
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"epoch": 51.0,
|
512 |
+
"eval_accuracy": 0.625,
|
513 |
+
"eval_loss": 1.2417709827423096,
|
514 |
+
"eval_runtime": 0.2272,
|
515 |
+
"eval_samples_per_second": 35.217,
|
516 |
+
"eval_steps_per_second": 4.402,
|
517 |
+
"step": 77
|
518 |
+
},
|
519 |
+
{
|
520 |
+
"epoch": 52.0,
|
521 |
+
"eval_accuracy": 0.625,
|
522 |
+
"eval_loss": 1.2575104236602783,
|
523 |
+
"eval_runtime": 0.2279,
|
524 |
+
"eval_samples_per_second": 35.099,
|
525 |
+
"eval_steps_per_second": 4.387,
|
526 |
+
"step": 78
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 53.0,
|
530 |
+
"eval_accuracy": 0.625,
|
531 |
+
"eval_loss": 1.2707685232162476,
|
532 |
+
"eval_runtime": 0.2281,
|
533 |
+
"eval_samples_per_second": 35.068,
|
534 |
+
"eval_steps_per_second": 4.384,
|
535 |
+
"step": 79
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 53.333333333333336,
|
539 |
+
"grad_norm": 4.976161479949951,
|
540 |
+
"learning_rate": 2.1367521367521368e-05,
|
541 |
+
"loss": 0.1561,
|
542 |
+
"step": 80
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 54.0,
|
546 |
+
"eval_accuracy": 0.625,
|
547 |
+
"eval_loss": 1.2665772438049316,
|
548 |
+
"eval_runtime": 0.2284,
|
549 |
+
"eval_samples_per_second": 35.019,
|
550 |
+
"eval_steps_per_second": 4.377,
|
551 |
+
"step": 81
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"epoch": 55.0,
|
555 |
+
"eval_accuracy": 0.625,
|
556 |
+
"eval_loss": 1.2240548133850098,
|
557 |
+
"eval_runtime": 0.2281,
|
558 |
+
"eval_samples_per_second": 35.073,
|
559 |
+
"eval_steps_per_second": 4.384,
|
560 |
+
"step": 83
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 56.0,
|
564 |
+
"eval_accuracy": 0.625,
|
565 |
+
"eval_loss": 1.2088531255722046,
|
566 |
+
"eval_runtime": 0.227,
|
567 |
+
"eval_samples_per_second": 35.239,
|
568 |
+
"eval_steps_per_second": 4.405,
|
569 |
+
"step": 84
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 57.0,
|
573 |
+
"eval_accuracy": 0.625,
|
574 |
+
"eval_loss": 1.1913509368896484,
|
575 |
+
"eval_runtime": 0.2251,
|
576 |
+
"eval_samples_per_second": 35.546,
|
577 |
+
"eval_steps_per_second": 4.443,
|
578 |
+
"step": 85
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 58.0,
|
582 |
+
"eval_accuracy": 0.625,
|
583 |
+
"eval_loss": 1.1558996438980103,
|
584 |
+
"eval_runtime": 0.231,
|
585 |
+
"eval_samples_per_second": 34.632,
|
586 |
+
"eval_steps_per_second": 4.329,
|
587 |
+
"step": 87
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"epoch": 59.0,
|
591 |
+
"eval_accuracy": 0.625,
|
592 |
+
"eval_loss": 1.1386878490447998,
|
593 |
+
"eval_runtime": 0.2302,
|
594 |
+
"eval_samples_per_second": 34.748,
|
595 |
+
"eval_steps_per_second": 4.344,
|
596 |
+
"step": 89
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 60.0,
|
600 |
+
"grad_norm": 19.57244300842285,
|
601 |
+
"learning_rate": 1.7094017094017095e-05,
|
602 |
+
"loss": 0.1453,
|
603 |
+
"step": 90
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 60.0,
|
607 |
+
"eval_accuracy": 0.625,
|
608 |
+
"eval_loss": 1.1336504220962524,
|
609 |
+
"eval_runtime": 0.2275,
|
610 |
+
"eval_samples_per_second": 35.169,
|
611 |
+
"eval_steps_per_second": 4.396,
|
612 |
+
"step": 90
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 61.0,
|
616 |
+
"eval_accuracy": 0.625,
|
617 |
+
"eval_loss": 1.1289597749710083,
|
618 |
+
"eval_runtime": 0.2329,
|
619 |
+
"eval_samples_per_second": 34.356,
|
620 |
+
"eval_steps_per_second": 4.295,
|
621 |
+
"step": 91
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 62.0,
|
625 |
+
"eval_accuracy": 0.625,
|
626 |
+
"eval_loss": 1.1369203329086304,
|
627 |
+
"eval_runtime": 0.2293,
|
628 |
+
"eval_samples_per_second": 34.894,
|
629 |
+
"eval_steps_per_second": 4.362,
|
630 |
+
"step": 93
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"epoch": 63.0,
|
634 |
+
"eval_accuracy": 0.625,
|
635 |
+
"eval_loss": 1.1438777446746826,
|
636 |
+
"eval_runtime": 0.2263,
|
637 |
+
"eval_samples_per_second": 35.359,
|
638 |
+
"eval_steps_per_second": 4.42,
|
639 |
+
"step": 95
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 64.0,
|
643 |
+
"eval_accuracy": 0.625,
|
644 |
+
"eval_loss": 1.14479660987854,
|
645 |
+
"eval_runtime": 0.2307,
|
646 |
+
"eval_samples_per_second": 34.673,
|
647 |
+
"eval_steps_per_second": 4.334,
|
648 |
+
"step": 96
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 65.0,
|
652 |
+
"eval_accuracy": 0.625,
|
653 |
+
"eval_loss": 1.153009057044983,
|
654 |
+
"eval_runtime": 0.2302,
|
655 |
+
"eval_samples_per_second": 34.748,
|
656 |
+
"eval_steps_per_second": 4.344,
|
657 |
+
"step": 97
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 66.0,
|
661 |
+
"eval_accuracy": 0.625,
|
662 |
+
"eval_loss": 1.1718435287475586,
|
663 |
+
"eval_runtime": 0.2286,
|
664 |
+
"eval_samples_per_second": 35.003,
|
665 |
+
"eval_steps_per_second": 4.375,
|
666 |
+
"step": 99
|
667 |
+
},
|
668 |
+
{
|
669 |
+
"epoch": 66.66666666666667,
|
670 |
+
"grad_norm": 5.6247944831848145,
|
671 |
+
"learning_rate": 1.282051282051282e-05,
|
672 |
+
"loss": 0.1271,
|
673 |
+
"step": 100
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"epoch": 67.0,
|
677 |
+
"eval_accuracy": 0.625,
|
678 |
+
"eval_loss": 1.1965450048446655,
|
679 |
+
"eval_runtime": 0.2246,
|
680 |
+
"eval_samples_per_second": 35.611,
|
681 |
+
"eval_steps_per_second": 4.451,
|
682 |
+
"step": 101
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 68.0,
|
686 |
+
"eval_accuracy": 0.625,
|
687 |
+
"eval_loss": 1.2091799974441528,
|
688 |
+
"eval_runtime": 0.2266,
|
689 |
+
"eval_samples_per_second": 35.297,
|
690 |
+
"eval_steps_per_second": 4.412,
|
691 |
+
"step": 102
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 69.0,
|
695 |
+
"eval_accuracy": 0.625,
|
696 |
+
"eval_loss": 1.2176190614700317,
|
697 |
+
"eval_runtime": 0.226,
|
698 |
+
"eval_samples_per_second": 35.4,
|
699 |
+
"eval_steps_per_second": 4.425,
|
700 |
+
"step": 103
|
701 |
+
},
|
702 |
+
{
|
703 |
+
"epoch": 70.0,
|
704 |
+
"eval_accuracy": 0.625,
|
705 |
+
"eval_loss": 1.2336797714233398,
|
706 |
+
"eval_runtime": 0.2275,
|
707 |
+
"eval_samples_per_second": 35.172,
|
708 |
+
"eval_steps_per_second": 4.397,
|
709 |
+
"step": 105
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 71.0,
|
713 |
+
"eval_accuracy": 0.625,
|
714 |
+
"eval_loss": 1.2376230955123901,
|
715 |
+
"eval_runtime": 0.2255,
|
716 |
+
"eval_samples_per_second": 35.481,
|
717 |
+
"eval_steps_per_second": 4.435,
|
718 |
+
"step": 107
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 72.0,
|
722 |
+
"eval_accuracy": 0.625,
|
723 |
+
"eval_loss": 1.238419532775879,
|
724 |
+
"eval_runtime": 0.2258,
|
725 |
+
"eval_samples_per_second": 35.428,
|
726 |
+
"eval_steps_per_second": 4.429,
|
727 |
+
"step": 108
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"epoch": 73.0,
|
731 |
+
"eval_accuracy": 0.625,
|
732 |
+
"eval_loss": 1.2378357648849487,
|
733 |
+
"eval_runtime": 0.2254,
|
734 |
+
"eval_samples_per_second": 35.491,
|
735 |
+
"eval_steps_per_second": 4.436,
|
736 |
+
"step": 109
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 73.33333333333333,
|
740 |
+
"grad_norm": 16.670150756835938,
|
741 |
+
"learning_rate": 8.547008547008548e-06,
|
742 |
+
"loss": 0.1153,
|
743 |
+
"step": 110
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"epoch": 74.0,
|
747 |
+
"eval_accuracy": 0.625,
|
748 |
+
"eval_loss": 1.238478183746338,
|
749 |
+
"eval_runtime": 0.2784,
|
750 |
+
"eval_samples_per_second": 28.737,
|
751 |
+
"eval_steps_per_second": 3.592,
|
752 |
+
"step": 111
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 75.0,
|
756 |
+
"eval_accuracy": 0.625,
|
757 |
+
"eval_loss": 1.2316068410873413,
|
758 |
+
"eval_runtime": 0.2262,
|
759 |
+
"eval_samples_per_second": 35.368,
|
760 |
+
"eval_steps_per_second": 4.421,
|
761 |
+
"step": 113
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 76.0,
|
765 |
+
"eval_accuracy": 0.625,
|
766 |
+
"eval_loss": 1.2274171113967896,
|
767 |
+
"eval_runtime": 0.226,
|
768 |
+
"eval_samples_per_second": 35.392,
|
769 |
+
"eval_steps_per_second": 4.424,
|
770 |
+
"step": 114
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 77.0,
|
774 |
+
"eval_accuracy": 0.625,
|
775 |
+
"eval_loss": 1.2251871824264526,
|
776 |
+
"eval_runtime": 0.2311,
|
777 |
+
"eval_samples_per_second": 34.618,
|
778 |
+
"eval_steps_per_second": 4.327,
|
779 |
+
"step": 115
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 78.0,
|
783 |
+
"eval_accuracy": 0.625,
|
784 |
+
"eval_loss": 1.2195590734481812,
|
785 |
+
"eval_runtime": 0.2344,
|
786 |
+
"eval_samples_per_second": 34.126,
|
787 |
+
"eval_steps_per_second": 4.266,
|
788 |
+
"step": 117
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 79.0,
|
792 |
+
"eval_accuracy": 0.625,
|
793 |
+
"eval_loss": 1.2144805192947388,
|
794 |
+
"eval_runtime": 0.2276,
|
795 |
+
"eval_samples_per_second": 35.145,
|
796 |
+
"eval_steps_per_second": 4.393,
|
797 |
+
"step": 119
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 80.0,
|
801 |
+
"grad_norm": 18.376235961914062,
|
802 |
+
"learning_rate": 4.273504273504274e-06,
|
803 |
+
"loss": 0.0882,
|
804 |
+
"step": 120
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 80.0,
|
808 |
+
"eval_accuracy": 0.625,
|
809 |
+
"eval_loss": 1.213006615638733,
|
810 |
+
"eval_runtime": 0.2356,
|
811 |
+
"eval_samples_per_second": 33.955,
|
812 |
+
"eval_steps_per_second": 4.244,
|
813 |
+
"step": 120
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 81.0,
|
817 |
+
"eval_accuracy": 0.625,
|
818 |
+
"eval_loss": 1.2117276191711426,
|
819 |
+
"eval_runtime": 0.2323,
|
820 |
+
"eval_samples_per_second": 34.443,
|
821 |
+
"eval_steps_per_second": 4.305,
|
822 |
+
"step": 121
|
823 |
+
},
|
824 |
+
{
|
825 |
+
"epoch": 82.0,
|
826 |
+
"eval_accuracy": 0.625,
|
827 |
+
"eval_loss": 1.2097160816192627,
|
828 |
+
"eval_runtime": 0.2308,
|
829 |
+
"eval_samples_per_second": 34.655,
|
830 |
+
"eval_steps_per_second": 4.332,
|
831 |
+
"step": 123
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 83.0,
|
835 |
+
"eval_accuracy": 0.625,
|
836 |
+
"eval_loss": 1.2075334787368774,
|
837 |
+
"eval_runtime": 0.2252,
|
838 |
+
"eval_samples_per_second": 35.532,
|
839 |
+
"eval_steps_per_second": 4.441,
|
840 |
+
"step": 125
|
841 |
+
},
|
842 |
+
{
|
843 |
+
"epoch": 84.0,
|
844 |
+
"eval_accuracy": 0.625,
|
845 |
+
"eval_loss": 1.205414056777954,
|
846 |
+
"eval_runtime": 0.2269,
|
847 |
+
"eval_samples_per_second": 35.264,
|
848 |
+
"eval_steps_per_second": 4.408,
|
849 |
+
"step": 126
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 85.0,
|
853 |
+
"eval_accuracy": 0.625,
|
854 |
+
"eval_loss": 1.2038739919662476,
|
855 |
+
"eval_runtime": 0.2445,
|
856 |
+
"eval_samples_per_second": 32.718,
|
857 |
+
"eval_steps_per_second": 4.09,
|
858 |
+
"step": 127
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"epoch": 86.0,
|
862 |
+
"eval_accuracy": 0.625,
|
863 |
+
"eval_loss": 1.2025001049041748,
|
864 |
+
"eval_runtime": 0.244,
|
865 |
+
"eval_samples_per_second": 32.782,
|
866 |
+
"eval_steps_per_second": 4.098,
|
867 |
+
"step": 129
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 86.66666666666667,
|
871 |
+
"grad_norm": 6.174490928649902,
|
872 |
+
"learning_rate": 0.0,
|
873 |
+
"loss": 0.0987,
|
874 |
+
"step": 130
|
875 |
+
},
|
876 |
+
{
|
877 |
+
"epoch": 86.66666666666667,
|
878 |
+
"eval_accuracy": 0.625,
|
879 |
+
"eval_loss": 1.2021381855010986,
|
880 |
+
"eval_runtime": 0.2265,
|
881 |
+
"eval_samples_per_second": 35.317,
|
882 |
+
"eval_steps_per_second": 4.415,
|
883 |
+
"step": 130
|
884 |
+
},
|
885 |
+
{
|
886 |
+
"epoch": 86.66666666666667,
|
887 |
+
"step": 130,
|
888 |
+
"total_flos": 1.574865655328932e+17,
|
889 |
+
"train_loss": 0.3546037518061124,
|
890 |
+
"train_runtime": 225.362,
|
891 |
+
"train_samples_per_second": 41.533,
|
892 |
+
"train_steps_per_second": 0.577
|
893 |
+
}
|
894 |
+
],
|
895 |
+
"logging_steps": 10,
|
896 |
+
"max_steps": 130,
|
897 |
+
"num_input_tokens_seen": 0,
|
898 |
+
"num_train_epochs": 130,
|
899 |
+
"save_steps": 500,
|
900 |
+
"stateful_callbacks": {
|
901 |
+
"TrainerControl": {
|
902 |
+
"args": {
|
903 |
+
"should_epoch_stop": false,
|
904 |
+
"should_evaluate": false,
|
905 |
+
"should_log": false,
|
906 |
+
"should_save": false,
|
907 |
+
"should_training_stop": false
|
908 |
+
},
|
909 |
+
"attributes": {}
|
910 |
+
}
|
911 |
+
},
|
912 |
+
"total_flos": 1.574865655328932e+17,
|
913 |
+
"train_batch_size": 32,
|
914 |
+
"trial_name": null,
|
915 |
+
"trial_params": null
|
916 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a96c4a20e581fe9e08fca4557c67ff0e68b5b590c00d24f0cf2780c856e33981
|
3 |
+
size 5240
|