--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: receive upi mandate collect request marg techno project private limit inr 15000.00. log google pay app authorize - axis bank - text: 'sep-23 statement credit card x6343 total due : inr 5575.55 min due : inr 4811.55 due date : 08-oct-23 . pay www.kotak.com/rd/ccpymt - kotak bank' - text: '< # > use otp : 8233 login turtlemintpro zck+rfoaqnm' - text: 'arrive today : please use otp-550041 carefully read instructions secure amazon package ( id : sptp719784310 )' - text: a/c xxx51941 credit rs 132.00 12-08-2023 - fd1186130010001148int:132.00 tax:0.00. a/c balance rs 67022.91 .please call 18002082121 query . ujjivan sfb pipeline_tag: text-classification inference: true base_model: sentence-transformers/all-mpnet-base-v2 model-index: - name: SetFit with sentence-transformers/all-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.9722222222222222 name: Accuracy --- # SetFit with sentence-transformers/all-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 384 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2 | | | 0 | | | 1 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.9722 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("vipinbansal179/SetFit_sms_Analyzer5c95292") # Run inference preds = model("< # > use otp : 8233 login turtlemintpro zck+rfoaqnm") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 5 | 20.5357 | 35 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 31 | | 1 | 28 | | 2 | 81 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (4, 4) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:-------:|:-------------:|:---------------:| | 0.0014 | 1 | 0.2939 | - | | 0.0708 | 50 | 0.1698 | - | | 0.1416 | 100 | 0.0557 | - | | 0.2125 | 150 | 0.0614 | - | | 0.2833 | 200 | 0.0099 | - | | 0.3541 | 250 | 0.0005 | - | | 0.4249 | 300 | 0.0002 | - | | 0.4958 | 350 | 0.0001 | - | | 0.5666 | 400 | 0.0001 | - | | 0.6374 | 450 | 0.0001 | - | | 0.7082 | 500 | 0.0001 | - | | 0.7790 | 550 | 0.0001 | - | | 0.8499 | 600 | 0.0002 | - | | 0.9207 | 650 | 0.0001 | - | | 0.9915 | 700 | 0.0001 | - | | **1.0** | **706** | **-** | **0.0312** | | 1.0623 | 750 | 0.0001 | - | | 1.1331 | 800 | 0.0001 | - | | 1.2040 | 850 | 0.0001 | - | | 1.2748 | 900 | 0.0 | - | | 1.3456 | 950 | 0.0001 | - | | 1.4164 | 1000 | 0.0 | - | | 1.4873 | 1050 | 0.0 | - | | 1.5581 | 1100 | 0.0 | - | | 1.6289 | 1150 | 0.0 | - | | 1.6997 | 1200 | 0.0 | - | | 1.7705 | 1250 | 0.0 | - | | 1.8414 | 1300 | 0.0001 | - | | 1.9122 | 1350 | 0.0 | - | | 1.9830 | 1400 | 0.0001 | - | | 2.0 | 1412 | - | 0.0366 | | 2.0538 | 1450 | 0.0 | - | | 2.1246 | 1500 | 0.0001 | - | | 2.1955 | 1550 | 0.0 | - | | 2.2663 | 1600 | 0.0 | - | | 2.3371 | 1650 | 0.0 | - | | 2.4079 | 1700 | 0.0 | - | | 2.4788 | 1750 | 0.0 | - | | 2.5496 | 1800 | 0.0 | - | | 2.6204 | 1850 | 0.0 | - | | 2.6912 | 1900 | 0.0 | - | | 2.7620 | 1950 | 0.0 | - | | 2.8329 | 2000 | 0.0 | - | | 2.9037 | 2050 | 0.0 | - | | 2.9745 | 2100 | 0.0 | - | | 3.0 | 2118 | - | 0.0414 | | 3.0453 | 2150 | 0.0 | - | | 3.1161 | 2200 | 0.0 | - | | 3.1870 | 2250 | 0.0 | - | | 3.2578 | 2300 | 0.0 | - | | 3.3286 | 2350 | 0.0 | - | | 3.3994 | 2400 | 0.0 | - | | 3.4703 | 2450 | 0.0 | - | | 3.5411 | 2500 | 0.0 | - | | 3.6119 | 2550 | 0.0 | - | | 3.6827 | 2600 | 0.0 | - | | 3.7535 | 2650 | 0.0 | - | | 3.8244 | 2700 | 0.0 | - | | 3.8952 | 2750 | 0.0 | - | | 3.9660 | 2800 | 0.0 | - | | 4.0 | 2824 | - | 0.0366 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.1 - Sentence Transformers: 2.2.2 - Transformers: 4.35.2 - PyTorch: 2.1.0+cu121 - Datasets: 2.16.0 - Tokenizers: 0.15.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```