--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-dutch-fast-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice type: common_voice config: nl split: test args: nl metrics: - name: Wer type: wer value: 0.45272386997029984 --- # wav2vec2-large-xls-r-300m-dutch-fast-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.6524 - Wer: 0.4527 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.6663 | 0.82 | 200 | 2.9575 | 1.0 | | 2.25 | 1.65 | 400 | 1.3191 | 0.8679 | | 0.6388 | 2.47 | 600 | 0.9136 | 0.6240 | | 0.3383 | 3.29 | 800 | 0.8049 | 0.5603 | | 0.2091 | 4.12 | 1000 | 0.7214 | 0.4917 | | 0.1356 | 4.94 | 1200 | 0.6524 | 0.4527 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3