{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9a0f881040>"}, "verbose": 0, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1556000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685443798428119352, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAE3Ggb6Duwm9944PP7Bm3z4s3dI/FLymPre4eD/moAW/ZjkVP4fHUL2AT2s/cB00Pw+lID9/FuC/XnF2Pi4cxL/mLGU/HEJrvz2oWT+b6Js/o/IxP2cBMT/VoiO/5nIPvi2Lcj84D7+/SLnZPj77j7/sMtM+MYEOv4wUFj/ac1g/nwErP8hNez9xhCs/YcaUPsRgFD8N7UO9lKGwvtcRE8DBjIM8kGCLP69cjb+F2Bg/WoqjP1FFqj8jaxK9kmjsv/aoPz/dxwI/lLUuPaUI1D75GYe/v4ErP0i52T4++4+/WSOwvoNoGT39MQo/vLQbPxmpkr4LNqe+DDmKPVv9cD/2pxY/sBSKPeS9Kb4Nh7Y+YyPFvS+1f7+pHuO+ZlsuwKHLcz8iUpa+bWKbvoWSCT/Q1UM9L0PgP5U4Hb/7yRDALYtyP7+BKz+sgBbAPvuPv5zLjz6iqQo/QWOGPlv++z5BMSu/7p7kPGw1Nr51W8C+sOIYP/t3NL2aLMc+sp+oPonqDr93LCW/+/H3PDsbNb8vDJ8+K9pov/KXD75GeSQ/La2svH9lrz/S0ns+FQ8mv/kZh7+/gSs/SLnZPj77j7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABaOny2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1BFDPQAAAABeHQDAAAAAAAyrlL0AAAAAyo7uPwAAAADoSam8AAAAAA/12z8AAAAAUpe5PAAAAADcYPi/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg2hMNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAiW9T0AAAAACLbovwAAAABJC0U9AAAAAIw19j8AAAAAvjXxPQAAAACrH/M/AAAAABWysb0AAAAAEkv3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGcDv7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICkTcw7AAAAAAy04r8AAAAAB4hkPAAAAAB9Vtk/AAAAAIYm7b0AAAAANBf+PwAAAADE6QE+AAAAAEDG/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACKFY22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYxfnPQAAAADlpvC/AAAAAMbX6TwAAAAAT+f6PwAAAADCDt69AAAAADrMAEAAAAAAeFFGvAAAAAAgb+2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.22199999999999998, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJx7IV8CxNaMAWyUTegDjAF0lEdAqCbwEQoTf3V9lChoBkdAm+JSj59E1GgHTegDaAhHQKgorduYQat1fZQoaAZHQJ8V0tPHktFoB03oA2gIR0CoKNrksBhhdX2UKGgGR0CbBYed07r+aAdN6ANoCEdAqCwEg4ffXXV9lChoBkdAnlvQMlTm4mgHTegDaAhHQKgzg18b70p1fZQoaAZHQKDSM9/z8P5oB03oA2gIR0CoNTgkka/AdX2UKGgGR0Cc7kXHim2taAdN6ANoCEdAqDVshaC+UXV9lChoBkdAjcv85CF9KGgHTegDaAhHQKg6CJCSidt1fZQoaAZHQJ0PvPZ7HABoB03oA2gIR0CoQ9+CbtqpdX2UKGgGR0CYJswRXfZVaAdN6ANoCEdAqEWbAUL2H3V9lChoBkdAmMGabz9S/GgHTegDaAhHQKhFx5BTn7p1fZQoaAZHQJ6bqTcIqsloB03oA2gIR0CoSO+fRNRFdX2UKGgGR0Ce084Y77sOaAdN6ANoCEdAqFBRTQ3PzHV9lChoBkdAlC0QKOT7mGgHTegDaAhHQKhSD6VMVUN1fZQoaAZHQJfxZDmbLEFoB03oA2gIR0CoUjy+HrQgdX2UKGgGR0CQ17AnDziCaAdN6ANoCEdAqFXMn3L3bnV9lChoBkdAoAYLfgrH2mgHTegDaAhHQKhgfanrIHV1fZQoaAZHQKAKKLDye7NoB03oA2gIR0CoYj3uuzQedX2UKGgGR0CZg7EVFhG6aAdN6ANoCEdAqGJuRxLkCHV9lChoBkdAlsl33QD3d2gHTegDaAhHQKhltUxVQyh1fZQoaAZHQJodr2wmmchoB03oA2gIR0CobT74SHuadX2UKGgGR0CW4HcgyM1kaAdN6ANoCEdAqG70RBeHBXV9lChoBkdAmmKoBq9GqmgHTegDaAhHQKhvJbHIZIh1fZQoaAZHQJi/SNuLrHFoB03oA2gIR0Cock5A6dUbdX2UKGgGR0CYARx/d69kaAdN6ANoCEdAqH0cr08NhHV9lChoBkdAc1BSmZVn3GgHTegDaAhHQKh/Mma6ST11fZQoaAZHQJju8eDFqBVoB03oA2gIR0Cof18VpKzzdX2UKGgGR0CSdhEG7jDLaAdN6ANoCEdAqIJytDD0lXV9lChoBkdAmn9pVn27F2gHTegDaAhHQKiJ6butwJh1fZQoaAZHQJstBU2kzoFoB03oA2gIR0Coi6LLpzLfdX2UKGgGR0CRs7UX531SaAdN6ANoCEdAqIvPwZwXInV9lChoBkdAlEfVm8M/hWgHTegDaAhHQKiO4LpiZv11fZQoaAZHQJ6z7jo6jnFoB03oA2gIR0ComDJEH+qBdX2UKGgGR0Cal8bvw3HaaAdN6ANoCEdAqJrMdT5wfnV9lChoBkdAnPH8cABDHGgHTegDaAhHQKibEcy31Bd1fZQoaAZHQJedU1O0svtoB03oA2gIR0Conr43vQWvdX2UKGgGR0CXB4/5ckdFaAdN6ANoCEdAqKY9DBuXNXV9lChoBkdAlDBrwjMV12gHTegDaAhHQKin9vuPV/d1fZQoaAZHQJZfW86FM7FoB03oA2gIR0CoqCPwd8zAdX2UKGgGR0CP3fUnXumaaAdN6ANoCEdAqKtWfAbhnHV9lChoBkdAk8klBQemvWgHTegDaAhHQKizf85S3sp1fZQoaAZHQJw7dOXVsk9oB03oA2gIR0CotgPJA+pwdX2UKGgGR0CcZehaTwDvaAdN6ANoCEdAqLZJUkv9L3V9lChoBkdAnfbZFG5MDmgHTegDaAhHQKi7PhGYrrh1fZQoaAZHQJmm8lu3trtoB03oA2gIR0CowvQZOzppdX2UKGgGR0CakNulGgBcaAdN6ANoCEdAqMSsZzgdfnV9lChoBkdAncWLOmixmmgHTegDaAhHQKjE2Qmu1Wt1fZQoaAZHQJv9JHJ9y95oB03oA2gIR0Cox/YaxX4kdX2UKGgGR0Cfqm/fO2RaaAdN6ANoCEdAqM+FEy+HrXV9lChoBkdAnkZgDmr8zmgHTegDaAhHQKjR6ZsKsuF1fZQoaAZHQJnXniWE9MdoB03oA2gIR0Co0io7Njb0dX2UKGgGR0CgY3ZIQOFyaAdN6ANoCEdAqNbvkWAPNHV9lChoBkdAmmc/+sHSnmgHTegDaAhHQKjfuI5YHPh1fZQoaAZHQJ9oRzKcNH9oB03oA2gIR0Co4WyzXz19dX2UKGgGR0CcKKjcmBvraAdN6ANoCEdAqOGaXKKYRnV9lChoBkdAmesj0UXYUWgHTegDaAhHQKjksX7+DOF1fZQoaAZHQJYq9JCjUNNoB03oA2gIR0Co7CU7Sy+pdX2UKGgGR0CcEeYcNpdsaAdN6ANoCEdAqO3QiC8OC3V9lChoBkdAmfmAmReTmmgHTegDaAhHQKjt/ZVXFLp1fZQoaAZHQJrI1p22XsxoB03oA2gIR0Co8jQMH8jzdX2UKGgGR0CXx/fZElVtaAdN6ANoCEdAqPxgEU0vXnV9lChoBkdAlUPxhhH9WWgHTegDaAhHQKj+G/u9eyB1fZQoaAZHQJaXUY77sOZoB03oA2gIR0Co/ktorWiDdX2UKGgGR0CXZeCm/FisaAdN6ANoCEdAqQFvYxtYS3V9lChoBkdAm8loXoC+12gHTegDaAhHQKkI7aDf3vh1fZQoaAZHQJ/0DI2fkFRoB03oA2gIR0CpCqnqu8sddX2UKGgGR0CZPzRvFWGRaAdN6ANoCEdAqQrZPfsNUnV9lChoBkdAmu9zkdV/+mgHTegDaAhHQKkON1bJOnF1fZQoaAZHQJ9+ZiUgSvloB03oA2gIR0CpGSTollbvdX2UKGgGR0CfGWZ4wAU+aAdN6ANoCEdAqRroRIz3y3V9lChoBkdAm3wb/n4fwWgHTegDaAhHQKkbFr30wrV1fZQoaAZHQKAipHLA57xoB03oA2gIR0CpHjgKfFrEdX2UKGgGR0CZFLddmg8KaAdN6ANoCEdAqSXIIOYplXV9lChoBkdAl7GX4XXRPWgHTegDaAhHQKknoBWgezV1fZQoaAZHQJapVSEUTL5oB03oA2gIR0CpJ85UDMePdX2UKGgGR0CaHP2l2vB8aAdN6ANoCEdAqSr4tlI3BHV9lChoBkdAnRlDxG2CumgHTegDaAhHQKk1s/sVtXR1fZQoaAZHQJt96PS2H+JoB03oA2gIR0CpOAQ4CIUKdX2UKGgGR0CZfaPNFBppaAdN6ANoCEdAqTgwDNhVl3V9lChoBkdAlarUZ3s5XGgHTegDaAhHQKk7PF85S3t1fZQoaAZHQJz5gsasIVxoB03oA2gIR0CpQsBxxT86dX2UKGgGR0CXU/d1dPcjaAdN6ANoCEdAqUR2UMXrMXV9lChoBkdAl00htP557mgHTegDaAhHQKlEtHpbD/F1fZQoaAZHQI9O947ihnJoB03oA2gIR0CpSUmWD6FedX2UKGgGR0CVP4yu6mO3aAdN6ANoCEdAqVX032mHg3V9lChoBkdAkl333+MqBmgHTegDaAhHQKlY1Dpkf9x1fZQoaAZHQI0EKrDIikhoB03oA2gIR0CpWRxFRYRvdX2UKGgGR0CaltbFjurqaAdN6ANoCEdAqVxpybQTmHV9lChoBkdAmgpQy/KyOmgHTegDaAhHQKlj9Jz1bq11fZQoaAZHQJoP1MYdhiNoB03oA2gIR0CpZbb961LKdX2UKGgGR0Cb9EYq5LAYaAdN6ANoCEdAqWXkRUWEb3V9lChoBkdAlLBBj4Hoo2gHTegDaAhHQKlpBEit7rt1fZQoaAZHQJfnNRm9QGhoB03oA2gIR0Cpccs6BAfMdX2UKGgGR0CdPkRzijtYaAdN6ANoCEdAqXRekLx7RnV9lChoBkdAnHAWSEDhcmgHTegDaAhHQKl0obiIcip1fZQoaAZHQJ6aFOTJQtVoB03oA2gIR0CpeQP3ztkXdX2UKGgGR0CZ9wU4rBj4aAdN6ANoCEdAqYCBMSK3u3V9lChoBkdAmVb8sxwhn2gHTegDaAhHQKmCQ6T4cm11fZQoaAZHQJ6FHNqxkd5oB03oA2gIR0CpgnLyUcGUdX2UKGgGR0CehlVPva11aAdN6ANoCEdAqYWdlf7aZnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 48624, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}