--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9248727594600575 - name: Recall type: recall value: 0.9351157847633964 - name: F1 type: f1 value: 0.9299660677532403 - name: Accuracy type: accuracy value: 0.9834622777892513 --- # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0611 - Precision: 0.9249 - Recall: 0.9351 - F1: 0.9300 - Accuracy: 0.9835 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2463 | 1.0 | 878 | 0.0687 | 0.9129 | 0.9220 | 0.9175 | 0.9816 | | 0.0549 | 2.0 | 1756 | 0.0608 | 0.9243 | 0.9347 | 0.9295 | 0.9834 | | 0.0309 | 3.0 | 2634 | 0.0611 | 0.9249 | 0.9351 | 0.9300 | 0.9835 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3