import os import pickle from contextlib import nullcontext import torch import tiktoken from model import GPTConfig, GPT out_dir = 'out' start = "\n" # or "<|endoftext|>" or etc. Can also specify a file, use as: "FILE:prompt.txt" num_samples = 5 max_new_tokens = 100 temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability seed = 1337 device = 'mps' dtype = 'float16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32' or 'bfloat16' or 'float16' compile = False # use PyTorch 2.0 to compile the model to be faster exec(open('configurator.py').read()) # overrides from command line or config file input_test_text = "What is the answer to life, the universe, and everything?" torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn device_type = 'mps' if 'cuda' in device else 'cpu' # for later use in torch.autocast ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype) ckpt_path = os.path.join(out_dir, 'model.ckpt') checkpoint = torch.load(ckpt_path, map_location=device) gptconf = GPTConfig(**checkpoint['model_args']) model = GPT(gptconf) state_dict = checkpoint['model'] unwanted_prefix = '_orig_mod.' for k,v in list(state_dict.items()): if k.startswith(unwanted_prefix): state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k) model.load_state_dict(state_dict) model.eval() model.to(device) if compile: model = torch.compile(model) # requires PyTorch 2.0 (optional) enc = tiktoken.get_encoding("gpt2") encode = lambda s: enc.encode(s, allowed_special={"<|endoftext|>"}) decode = lambda l: enc.decode(l) start_ids = encode(input_test_text) x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...]) with torch.no_grad(): with ctx: for k in range(num_samples): y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k) print(decode(y[0].tolist())) print('---------------')