--- tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: mert-base-finetuned-gtzan results: [] --- # mert-base-finetuned-gtzan This model is a fine-tuned version of [yangwang825/mert-base](https://huggingface.co/yangwang825/mert-base) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6800 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0961 | 1.0 | 112 | 1.2710 | 0.59 | | 0.9162 | 2.0 | 224 | 1.0297 | 0.64 | | 0.721 | 3.0 | 336 | 1.1227 | 0.56 | | 0.5045 | 4.0 | 448 | 0.5215 | 0.83 | | 0.3727 | 5.0 | 560 | 0.5263 | 0.86 | | 0.1159 | 6.0 | 672 | 0.8055 | 0.84 | | 0.0276 | 7.0 | 784 | 0.5396 | 0.87 | | 0.1 | 8.0 | 896 | 0.6800 | 0.88 | | 0.2564 | 9.0 | 1008 | 0.5907 | 0.87 | | 0.1327 | 10.0 | 1120 | 0.5915 | 0.88 | ### Framework versions - Transformers 4.25.1 - Pytorch 2.5.0+cu121 - Datasets 2.7.1 - Tokenizers 0.13.3