{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c097aab3f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1706367392643528505, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADP3r7tSyfi7qcowPIJAIj0ZYFu9UMQDPgAAgD8AAIA/mnMtPaT2ZzzKkuW9mUeQvtvowbtW7Kw9AAAAAAAAAAAQe1e+5cGxPv2sQj7HQlW+0nIYvWyeBj0AAAAAAAAAAE0/aT3scdM4d6GLvYm7CDmGO9E6JYOBuAAAgD8AAIA/mmWvPbSnhryyeiM7lj2AvTzHNj0ta2w+AACAPwAAgD/mm1c9ttdbPd+5I729RgC+lrjTvE1s9bwAAAAAAAAAAD2/aL4bAIw/dgnDvjpP7L4Xa76+I/sAvQAAAAAAAAAA7Ts5PpyKMT/xNxS+5YGBvmHISz1CGTO+AAAAAAAAAADalps9zchFP6M6/T2E2bG+QKYuPTJRSjwAAAAAAAAAAOAJGj7D5BS84IkXPUrVbbvig3K931xGvAAAgD8AAIA/zaC+u1fqqD6GPwI+kOxpvqZXYT0CUhc8AAAAAAAAAABQmMA+k3cXP9Yzg73HWaC+dcJMPd4JBb0AAAAAAAAAAM0c/rqFe44/M5UGvTMizb5ceJm7GhC4vAAAAAAAAAAA2qchvq9rUD+45ru7dLysvmQWV75tgdA9AAAAAAAAAAAAxyU+BCLiPsoGGL5rgKK+8ZIuPJw4oDwAAAAAAAAAAAZBD77i2Yc/JsPgvg3pB78ghRO+d6tJvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHADwN9YwIuMAWyUTQkBjAF0lEdAkrSXd0q6OHV9lChoBkdAcCxDyvs7dWgHTUYBaAhHQJK072IwdsB1fZQoaAZHQEAUEt/WlM1oB0vRaAhHQJK1OO0b9611fZQoaAZHQHJlU9U0eltoB00BAWgIR0CStLNG3F1kdX2UKGgGR0Bu6wsTWXkYaAdNHgFoCEdAkrecLfDUE3V9lChoBkdAcIMxyn1nNGgHTSYBaAhHQJK36udPLxJ1fZQoaAZHQEsrLLZBcA1oB0vhaAhHQJK39nXd0q91fZQoaAZHQHBrjQZ4wAVoB01CAWgIR0CSuYOx0MgEdX2UKGgGR0BxY/7zkIX1aAdNGgFoCEdAkrizisGPgnV9lChoBkdAcJsIO6NEPWgHTSEBaAhHQJK51HSWqtJ1fZQoaAZHQHEqdJe3QUpoB00kAWgIR0CSuup3X7LudX2UKGgGR0Bx8tX7tRekaAdNHQFoCEdAkr09ZzPrwHV9lChoBkdAaDGUmlZX+2gHTYgCaAhHQJK9XxkNF0B1fZQoaAZHQG1kdGI9C/poB00ZAWgIR0CSvh/ag261dX2UKGgGR0BwZJ4FA3UAaAdNLAFoCEdAkr3iBK+SKXV9lChoBkdAbN8jKPn0TWgHTQ4BaAhHQJK/S4jKPn11fZQoaAZHQHCSAKF7D2toB00rAWgIR0CSwBZaV2RrdX2UKGgGR0BxEuRq46OpaAdNSAFoCEdAksDUZ75VO3V9lChoBkdAcP9Hs1KoRGgHTSsBaAhHQJK/+9XcQAd1fZQoaAZHQHFdyXpnpStoB00WAWgIR0CSwjR+SbH7dX2UKGgGR0ByV3X/YJ3QaAdNKAFoCEdAksNIC6pYLnV9lChoBkdAbkNP5YYBNmgHS/RoCEdAksRPw7T2FnV9lChoBkdAcNrKXOW0JGgHTSoBaAhHQJLDbBnBciZ1fZQoaAZHQHFgcPBi1AtoB00UAWgIR0CSxHLEUCaJdX2UKGgGR0BswHvlU6xPaAdNGQFoCEdAksOAeii7CnV9lChoBkdAcAQXLNfPX2gHTSgBaAhHQJLE09eQdS51fZQoaAZHQHLwpRTCLuRoB00RAWgIR0CSx6n6l+EzdX2UKGgGR0BxxKRPoFFEaAdNGwFoCEdAksgtSIgvDnV9lChoBkdAbqcXkYGdJGgHS/5oCEdAksek9yLhrHV9lChoBkdAboDi83++/WgHTSMBaAhHQJLJSxW1c+t1fZQoaAZHQHABYYNy5qdoB00bAWgIR0CSyi96C17ZdX2UKGgGR0A3NHxz7uUmaAdL0mgIR0CSykguRLbpdX2UKGgGR0BwUjWlMyrQaAdNAwFoCEdAksq87lq8DnV9lChoBkdAY6KJRfnfVWgHTRUDaAhHQJLLAMMI/qx1fZQoaAZHQHIfeWnjyWloB00nAWgIR0CSy1hR64UfdX2UKGgGR0BvU5hz/6wdaAdNIgFoCEdAksraHKwIMXV9lChoBkdAcUgSIxgy/WgHS/ZoCEdAks1pfYzzmXV9lChoBkdAbMKmTkhib2gHTTABaAhHQJLOxZdOZb91fZQoaAZHQHHdqBVdX1doB00jAWgIR0CSzqFev6j4dX2UKGgGR0BvvL08NhE0aAdNJwFoCEdAks66nJkoW3V9lChoBkdAa7fMvh60IGgHTSUBaAhHQJLQPJdSl311fZQoaAZHQHFxnxvvSc9oB01RAWgIR0CS0ZupjtojdX2UKGgGR0BzCjxSYPXkaAdNBwFoCEdAktLsKTjebnV9lChoBkdAbt3uYx+KCWgHTUQBaAhHQJLnCrT6SDB1fZQoaAZHQHKupQDV6NVoB00bAWgIR0CS5xRvFWGRdX2UKGgGR0BwDHiNsFdLaAdNDgFoCEdAkueKij+Jg3V9lChoBkdAbuj/io86m2gHTQEBaAhHQJLnyPDHfdh1fZQoaAZHQHD8qV+qioNoB00bAWgIR0CS6HEnssxxdX2UKGgGR0Bwt5i/fwZwaAdNLgFoCEdAkuiP/3nIQ3V9lChoBkdAb7e2WpqASWgHTRkBaAhHQJLo5plBhQZ1fZQoaAZHQHNXJs0pEx9oB00UAWgIR0CS6EzSThYOdX2UKGgGR0BtiL0pVjqfaAdNeAFoCEdAkuiU4WDYiHV9lChoBkdAbpcpyZKFqWgHS/poCEdAkuuqAOJ+D3V9lChoBkdAckbm9g4OtmgHTTYBaAhHQJLrt+9alk91fZQoaAZHQHCv8rEtNBZoB00TAWgIR0CS6yt5D7ZWdX2UKGgGR0BywPD8+A3DaAdNLAFoCEdAkuvhbOeJ53V9lChoBkdAcPVlIEr5I2gHTQ8BaAhHQJLtRlFtsN51fZQoaAZHQHEad1dPci5oB01cAWgIR0CS7d0KZ2IPdX2UKGgGR0Bw1TBMzuWsaAdL/GgIR0CS7xf642CNdX2UKGgGR0BvoM+1SflIaAdL+2gIR0CS7xiJO32FdX2UKGgGR0ByH62jO9nLaAdNRgFoCEdAku/gXdj5K3V9lChoBkdAcu5cuanaWWgHTRsBaAhHQJLwhCMPz4F1fZQoaAZHQG4NvvKEFntoB00JAWgIR0CS8OYEW69TdX2UKGgGR0By+/xJ/XoUaAdNEgFoCEdAkvET+m3vyHV9lChoBkdAbvNsoDxLCmgHTRkBaAhHQJLxIkD6nBN1fZQoaAZHQG9JqMWGh25oB01IAWgIR0CS8iBYFJQMdX2UKGgGR0ByzAu9OARTaAdNJwFoCEdAkvHRPCVKPHV9lChoBkdAcNLIzWPLgWgHTQYBaAhHQJLz7VQQ+U11fZQoaAZHQHFWgM2FWXFoB00PAWgIR0CS87SgXdj5dX2UKGgGR0Bx0+GFi8WcaAdNIwFoCEdAkvTb2Dg62nV9lChoBkdAcjl44p+c6WgHTYsBaAhHQJL1Tk5p8F91fZQoaAZHQHFyQTEit7toB00fAWgIR0CS9kvzvqkedX2UKGgGR0Bvmczwc5sCaAdNNwFoCEdAkvWxgVoHs3V9lChoBkdAcLZuuzQeFWgHTSIBaAhHQJL2/UTcqON1fZQoaAZHQHGA4P9UCJZoB00dAWgIR0CS+CZwXIludX2UKGgGR0BszKhg3LmqaAdNBQFoCEdAkvg3ogV45nV9lChoBkdAcaLYgJTl1mgHTSEBaAhHQJL57w+dK/V1fZQoaAZHQG5RivPkaMtoB00cAWgIR0CS+ip8neBQdX2UKGgGR0BzZPgccU/OaAdL+2gIR0CS+XDjzZpSdX2UKGgGR0Bt7dCLMs6JaAdNbwFoCEdAkvsEQXhwVHV9lChoBkdAcPKcIqsls2gHTRgBaAhHQJL7VpUPxx11fZQoaAZHQHMRXFglWwNoB01VAWgIR0CS/Cg6ltTDdX2UKGgGR0ByBuaLGaQWaAdNPgFoCEdAkvxf73wkPnV9lChoBkdAbz86e5Fw1mgHTQYBaAhHQJL8b7qIJqt1fZQoaAZHQG/jDlgc94hoB00RAWgIR0CS/tcmShaldX2UKGgGR0Bxa5gDzRQaaAdNVQFoCEdAkv/4ao/A03V9lChoBkdAcl72AoXsPmgHTRwBaAhHQJMAufra/RF1fZQoaAZHQHHWPjS5RTFoB01cAWgIR0CTAZS9du50dX2UKGgGR0BukR/XoTwlaAdNHwFoCEdAkwHnw9aEBnV9lChoBkdAcMLAj6eoUGgHTQQBaAhHQJMCRWOp84R1fZQoaAZHQG7tjfNzKcNoB00bAWgIR0CTBfGpuMuOdX2UKGgGR0BwcEO09hZyaAdNSwFoCEdAkwX+/Dcdo3V9lChoBkdAbiZWtlqagGgHTRIBaAhHQJMFJ6IFeOZ1fZQoaAZHQG3C/ek56t1oB00fAWgIR0CTBlazu4PPdX2UKGgGR0BxaqbG3nZCaAdNFwFoCEdAkwdIsAeaKHV9lChoBkdAcSFSEDhcaGgHTQUBaAhHQJMHjsv7FbV1fZQoaAZHQG/UnjQzDXRoB02/AWgIR0CTB02zfJmvdX2UKGgGR0Btq/4AS39aaAdNVAFoCEdAkwjrgbZOBXV9lChoBkdAbgFJBgNPQGgHTRcBaAhHQJMIStA9mpV1fZQoaAZHQHBCRgRbr1NoB00dAWgIR0CTCIf+jua4dWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}