--- language: multilingual tags: - zero-shot-classification - nli - pytorch datasets: - mnli - xnli - anli license: mit pipeline_tag: zero-shot-classification widget: - text: "De pugna erat fantastic. Nam Crixo decem quam dilexit et praeciderunt caput aemulus." candidate_labels: "violent, peaceful" - text: "La película empezaba bien pero terminó siendo un desastre." candidate_labels: "positivo, negativo, neutral" - text: "La película empezó siendo un desastre pero en general fue bien." candidate_labels: "positivo, negativo, neutral" - text: "¿A quién vas a votar en 2020?" candidate_labels: "Europa, elecciones, política, ciencia, deportes" --- ### XLM-RoBERTa-large-XNLI-ANLI XLM-RoBERTa-large model finetunned over several NLI datasets, ready to use for zero-shot classification. Here are the accuracies for several test datasets: | | XNLI-es | XNLI-fr | ANLI-R1 | ANLI-R2 | ANLI-R3 | |-----------------------------|---------|---------|---------|---------|---------| | xlm-roberta-large-xnli-anli | 93.7% | 93.2% | 68.5% | 53.6% | 49.0% | The model can be loaded with the zero-shot-classification pipeline like so: ``` from transformers import pipeline classifier = pipeline("zero-shot-classification", model="vicgalle/xlm-roberta-large-xnli-anli") ``` You can then use this pipeline to classify sequences into any of the class names you specify: ``` sequence_to_classify = "Algún día iré a ver el mundo" candidate_labels = ['viaje', 'cocina', 'danza'] classifier(sequence_to_classify, candidate_labels) #{'sequence': 'Algún día iré a ver el mundo', #'labels': ['viaje', 'danza', 'cocina'], #'scores': [0.9991760849952698, 0.0004178212257102132, 0.0004059972707182169]} ```