--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7713 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9891 | 0.99 | 56 | 1.9587 | 0.4 | | 1.5271 | 2.0 | 113 | 1.4658 | 0.56 | | 1.074 | 2.99 | 169 | 0.9198 | 0.79 | | 0.8036 | 4.0 | 226 | 0.9191 | 0.7 | | 0.5017 | 4.99 | 282 | 0.7299 | 0.8 | | 0.3405 | 6.0 | 339 | 0.6682 | 0.8 | | 0.2178 | 6.99 | 395 | 0.6877 | 0.82 | | 0.116 | 8.0 | 452 | 0.6092 | 0.83 | | 0.0616 | 8.99 | 508 | 0.6579 | 0.85 | | 0.0229 | 10.0 | 565 | 0.8793 | 0.8 | | 0.0128 | 10.99 | 621 | 0.6722 | 0.87 | | 0.0094 | 12.0 | 678 | 0.7586 | 0.87 | | 0.0073 | 12.99 | 734 | 0.7636 | 0.87 | | 0.007 | 14.0 | 791 | 0.7728 | 0.87 | | 0.0073 | 14.87 | 840 | 0.7713 | 0.87 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.11.0+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1