--- license: other base_model: Artigenz/Artigenz-Coder-DS-6.7B tags: - generated_from_trainer metrics: - accuracy - bleu - sacrebleu - rouge model-index: - name: Artigenz-Coder-DS-6.7B_Fi__components_size_252_epochs_10_2024-06-21_09-34-51_3556543 results: [] --- # Artigenz-Coder-DS-6.7B_Fi__components_size_252_epochs_10_2024-06-21_09-34-51_3556543 This model is a fine-tuned version of [Artigenz/Artigenz-Coder-DS-6.7B](https://huggingface.co/Artigenz/Artigenz-Coder-DS-6.7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6318 - Accuracy: 0.48 - Chrf: 0.022 - Bleu: 0.0 - Sacrebleu: 0.0 - Rouge1: 0.0 - Rouge2: 0.0 - Rougel: 0.0 - Rougelsum: 0.0 - Meteor: 0.099 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 3407 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 252 - training_steps: 2520 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Chrf | Bleu | Sacrebleu | Rouge1 | Rouge2 | Rougel | Rougelsum | Meteor | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----:|:-----:|:---------:|:------:|:------:|:------:|:---------:|:------:| | 0.0255 | 4.0 | 252 | 1.2068 | 0.468 | 0.574 | 0.429 | 0.4 | 0.507 | 0.325 | 0.458 | 0.504 | 0.56 | | 0.0989 | 8.0 | 504 | 3.8823 | 0.479 | 0.026 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.143 | | 0.1071 | 12.0 | 756 | 3.8516 | 0.477 | 0.036 | 0.036 | 0.0 | 0.158 | 0.079 | 0.155 | 0.158 | 0.135 | | 1.382 | 16.0 | 1008 | 3.7440 | 0.485 | 0.046 | 0.016 | 0.0 | 0.159 | 0.094 | 0.159 | 0.159 | 0.16 | | 0.2463 | 20.0 | 1260 | 3.8049 | 0.48 | 0.04 | 0.0 | 0.0 | 0.066 | 0.033 | 0.066 | 0.066 | 0.139 | | 0.6094 | 24.0 | 1512 | 3.9803 | 0.446 | 0.021 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.069 | | 0.0514 | 28.0 | 1764 | 3.7417 | 0.48 | 0.023 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.104 | | 0.2303 | 32.0 | 2016 | 3.6727 | 0.48 | 0.015 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.033 | | 0.064 | 36.0 | 2268 | 3.6537 | 0.48 | 0.02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.084 | | 0.0697 | 40.0 | 2520 | 3.6318 | 0.48 | 0.022 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.099 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.2.1+cu121 - Datasets 2.20.0 - Tokenizers 0.15.2