Add readme
Browse files
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: Artigenz/Artigenz-Coder-DS-6.7B
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- bleu
|
9 |
+
- sacrebleu
|
10 |
+
- rouge
|
11 |
+
model-index:
|
12 |
+
- name: Artigenz-Coder-DS-6.7B_Fi__components_size_252_epochs_10_2024-06-21_09-34-51_3556543
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# Artigenz-Coder-DS-6.7B_Fi__components_size_252_epochs_10_2024-06-21_09-34-51_3556543
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [Artigenz/Artigenz-Coder-DS-6.7B](https://huggingface.co/Artigenz/Artigenz-Coder-DS-6.7B) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 3.6318
|
24 |
+
- Accuracy: 0.48
|
25 |
+
- Chrf: 0.022
|
26 |
+
- Bleu: 0.0
|
27 |
+
- Sacrebleu: 0.0
|
28 |
+
- Rouge1: 0.0
|
29 |
+
- Rouge2: 0.0
|
30 |
+
- Rougel: 0.0
|
31 |
+
- Rougelsum: 0.0
|
32 |
+
- Meteor: 0.099
|
33 |
+
|
34 |
+
## Model description
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Intended uses & limitations
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training and evaluation data
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training procedure
|
47 |
+
|
48 |
+
### Training hyperparameters
|
49 |
+
|
50 |
+
The following hyperparameters were used during training:
|
51 |
+
- learning_rate: 0.001
|
52 |
+
- train_batch_size: 1
|
53 |
+
- eval_batch_size: 1
|
54 |
+
- seed: 3407
|
55 |
+
- distributed_type: multi-GPU
|
56 |
+
- num_devices: 4
|
57 |
+
- total_train_batch_size: 4
|
58 |
+
- total_eval_batch_size: 4
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_steps: 252
|
62 |
+
- training_steps: 2520
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Chrf | Bleu | Sacrebleu | Rouge1 | Rouge2 | Rougel | Rougelsum | Meteor |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----:|:-----:|:---------:|:------:|:------:|:------:|:---------:|:------:|
|
68 |
+
| 0.0255 | 4.0 | 252 | 1.2068 | 0.468 | 0.574 | 0.429 | 0.4 | 0.507 | 0.325 | 0.458 | 0.504 | 0.56 |
|
69 |
+
| 0.0989 | 8.0 | 504 | 3.8823 | 0.479 | 0.026 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.143 |
|
70 |
+
| 0.1071 | 12.0 | 756 | 3.8516 | 0.477 | 0.036 | 0.036 | 0.0 | 0.158 | 0.079 | 0.155 | 0.158 | 0.135 |
|
71 |
+
| 1.382 | 16.0 | 1008 | 3.7440 | 0.485 | 0.046 | 0.016 | 0.0 | 0.159 | 0.094 | 0.159 | 0.159 | 0.16 |
|
72 |
+
| 0.2463 | 20.0 | 1260 | 3.8049 | 0.48 | 0.04 | 0.0 | 0.0 | 0.066 | 0.033 | 0.066 | 0.066 | 0.139 |
|
73 |
+
| 0.6094 | 24.0 | 1512 | 3.9803 | 0.446 | 0.021 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.069 |
|
74 |
+
| 0.0514 | 28.0 | 1764 | 3.7417 | 0.48 | 0.023 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.104 |
|
75 |
+
| 0.2303 | 32.0 | 2016 | 3.6727 | 0.48 | 0.015 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.033 |
|
76 |
+
| 0.064 | 36.0 | 2268 | 3.6537 | 0.48 | 0.02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.084 |
|
77 |
+
| 0.0697 | 40.0 | 2520 | 3.6318 | 0.48 | 0.022 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.099 |
|
78 |
+
|
79 |
+
|
80 |
+
### Framework versions
|
81 |
+
|
82 |
+
- Transformers 4.37.0
|
83 |
+
- Pytorch 2.2.1+cu121
|
84 |
+
- Datasets 2.20.0
|
85 |
+
- Tokenizers 0.15.2
|