vdavidr commited on
Commit
39fd409
·
verified ·
1 Parent(s): 73a3a2b

Add readme

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: Artigenz/Artigenz-Coder-DS-6.7B
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - bleu
9
+ - sacrebleu
10
+ - rouge
11
+ model-index:
12
+ - name: Artigenz-Coder-DS-6.7B_Fi__components_size_252_epochs_10_2024-06-21_09-34-51_3556543
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # Artigenz-Coder-DS-6.7B_Fi__components_size_252_epochs_10_2024-06-21_09-34-51_3556543
20
+
21
+ This model is a fine-tuned version of [Artigenz/Artigenz-Coder-DS-6.7B](https://huggingface.co/Artigenz/Artigenz-Coder-DS-6.7B) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 3.6318
24
+ - Accuracy: 0.48
25
+ - Chrf: 0.022
26
+ - Bleu: 0.0
27
+ - Sacrebleu: 0.0
28
+ - Rouge1: 0.0
29
+ - Rouge2: 0.0
30
+ - Rougel: 0.0
31
+ - Rougelsum: 0.0
32
+ - Meteor: 0.099
33
+
34
+ ## Model description
35
+
36
+ More information needed
37
+
38
+ ## Intended uses & limitations
39
+
40
+ More information needed
41
+
42
+ ## Training and evaluation data
43
+
44
+ More information needed
45
+
46
+ ## Training procedure
47
+
48
+ ### Training hyperparameters
49
+
50
+ The following hyperparameters were used during training:
51
+ - learning_rate: 0.001
52
+ - train_batch_size: 1
53
+ - eval_batch_size: 1
54
+ - seed: 3407
55
+ - distributed_type: multi-GPU
56
+ - num_devices: 4
57
+ - total_train_batch_size: 4
58
+ - total_eval_batch_size: 4
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_steps: 252
62
+ - training_steps: 2520
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Chrf | Bleu | Sacrebleu | Rouge1 | Rouge2 | Rougel | Rougelsum | Meteor |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----:|:-----:|:---------:|:------:|:------:|:------:|:---------:|:------:|
68
+ | 0.0255 | 4.0 | 252 | 1.2068 | 0.468 | 0.574 | 0.429 | 0.4 | 0.507 | 0.325 | 0.458 | 0.504 | 0.56 |
69
+ | 0.0989 | 8.0 | 504 | 3.8823 | 0.479 | 0.026 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.143 |
70
+ | 0.1071 | 12.0 | 756 | 3.8516 | 0.477 | 0.036 | 0.036 | 0.0 | 0.158 | 0.079 | 0.155 | 0.158 | 0.135 |
71
+ | 1.382 | 16.0 | 1008 | 3.7440 | 0.485 | 0.046 | 0.016 | 0.0 | 0.159 | 0.094 | 0.159 | 0.159 | 0.16 |
72
+ | 0.2463 | 20.0 | 1260 | 3.8049 | 0.48 | 0.04 | 0.0 | 0.0 | 0.066 | 0.033 | 0.066 | 0.066 | 0.139 |
73
+ | 0.6094 | 24.0 | 1512 | 3.9803 | 0.446 | 0.021 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.069 |
74
+ | 0.0514 | 28.0 | 1764 | 3.7417 | 0.48 | 0.023 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.104 |
75
+ | 0.2303 | 32.0 | 2016 | 3.6727 | 0.48 | 0.015 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.033 |
76
+ | 0.064 | 36.0 | 2268 | 3.6537 | 0.48 | 0.02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.084 |
77
+ | 0.0697 | 40.0 | 2520 | 3.6318 | 0.48 | 0.022 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.099 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.37.0
83
+ - Pytorch 2.2.1+cu121
84
+ - Datasets 2.20.0
85
+ - Tokenizers 0.15.2